

Washington Department of **FISH and WILDLIFE**

Spokane River Fish and Flows – Recommendations and Rationale September 2012

Hal Beecher

Washington Department of Fish and Wildlife Spokane River hydrology and channel: Background

- Modified hydrology, but generally follows natural timing high flows in spring, low flows in late summer, transition in early summer
- Spokane Falls limits upstream movement, separates river (also hydro projects)
- Gravel deposits important for spawning trout, as identified by Dr. Scholz (EWU)

Spokane River fish and flows

- Native fishes adapted to natural timing, magnitude, duration, frequency of flows in natural channel features
- Not always ideal conditions, but favorable conditions needed for recovery from unfavorable conditions
 - Instream flows can protect against loss of favorable conditions
- Importance of natural processes that are driven by natural hydrology in natural channel

Spokane River fishes

- 39 species 15 H, 8 M, 16 L
- 18 native species 11 H, 4 M, 3 L
 - Where H = strong current and flow is important in life history
 - M = strong current and flow moderately important to life history
 - L = strong current and flow are not clearly important to life history
 - Source: Wydoski & Whitney's Inland Fishes of Washington

Spokane River fishes

- Rainbow trout (including redband) & mountain whitefish –
- Recreational importance, habitat suitability (depth, velocity, substrate) known
- Whitefish make up a major portion of biomass in river, therefore ecologically very important; associated with suckers that also make up significant part of biomass of river

Rainbow trout

Spawning – early April in gravel with moderate depth (usually >1 ft) and moderately fast current (1-2.5 ft/sec) Incubation – same place spawning happened, need to stay wet through mid-June

Juvenile and adult rearing generally prefer current (1-3 ft/sec) and deeper (2+ feet) for feeding and growing
 Winter – low activity – refuge in cover

Rainbow trout spawning and incubation

- Not every year is good for reproduction
- Trout can spawn several years in a row (ages 3-6)
- Can't afford to eliminate good years when they occur

Suitable spawning gravel

Rainbow trout spawning and incubation: April 1-June 15

- Highly variable, largely unregulated flow
 - usually the **highest flows** of the year
 - generally receding through incubation
- We can estimate what flows would be best for spawning and for incubation
- What flow is good for incubation depends on what flow occurred when trout spawn in April

Rainbow trout spawning and

incubation

 Addley and Peterson 2011 study provided new and more extensive data on trout spawning and incubation: - Peak spawning mid-April Peak emergence early June Table 5 provides specific information on inundation frequency of different spawning

areas

Rambow trout spawning and includion

Addley & Peterson (2011: Table 5):

 incubation success averaged 88%
 (median of 95%) during 1891-2011
 more recently averaged 80.5% with median of 85% during 1986-2014

Rainbow trout spawning and incubation

Comparison of historical and potential incubation flows and success rates

 <u>Historical period</u> 	Flow	% Incubation
 Potential 	9,000 cfs	95%
 Potential 	8,000 cfs	91.3%
• 1891-2011	varied	88% (95)
 Potential 	7,000 cfs	87.1%
 Potential 	6,000 cfs	82.1%
• 1986-2011	varied	80.5% (85)
 Potential 	5,000 cfs	76.2%
 Potential 	4,000 cfs	70%

Rainbow trout spawning and incubation

- Standard for April-June instream flow:
 - No reduction in incubation success relative to the 1986-2011 period
- Incubation success should average 80-81% with a median of 85%-90%.
- An incubation flow of **6,500 cfs** would equate to 85% incubation success on average with a median of 90%.

Rainbow trout rearing and mountain whitefish

- Trade-offs in upper river between flow (habitat) and temperature during summer
- High summer temperature can be stressful
 Crowth in aming
- Growth in spring
- and fall when
- temperature and food
- production most favorable
- Winter low activity for cold-blooded fish

Summer instream flows (June 16-

September 30)

Upper Spokane River (above Sullivan Road): - 500 cfs at the Barker Road gage
/Remainder of Spokane River: - 850 cfs at Spokane gage

Rainbow trout rearing and mountain whitefish

Fall and winter instream flows: October 1 – March 31

- Mountain whitefish
 - support a **sport fishery** during winter.
 - feed actively in winter.
 - are the most numerous fish in larger streams in Washington, including the Spokane River.
- In fall and winter we prioritized whitefish over trout
- Whitefish **spawn in f**all.
- Whitefish **spawning peaked near 1,700 cfs** in the lower river.
- In winter, rainbow trout have lower metabolic rates and tolerate more crowding than when they are active

Fall and winter instream flows: October 1 – March 31

Flow management

• Instream flow that limits major future withdrawal is important if major storage or export of water is potential

• (Would not affect existing water rights)

WDFW Instream Flow Recommendation for Spokane River at Spokane

- October 1 March 31 1,700 cfs
- April 1 June 15 6,500 cfs
- June 16 September 30 850 cfs

WDFW Instream Flow Recommendations

Spokane R at Spokane Exceedance Curves 1986 - 2008

Thanks to colleagues for discussions, help, and suggestions • Ecology – John Covert, Guy Gregory, Brad Caldwell, Sara Hunt, Marcie Mangold,

Rusty Post

Fish and Wildure – Doug Robison, Mark Wachtel, Chris Douley, John Whalen