

Environment Engineers

Examining Alternative TMDL Loading Scenarios with CE-QUAL-W2

Spokane DO TMDL Advisory Meeting Dave Dilks December 6, 2016

Disclaimer

- Work discussed in this presentation was conducted on behalf of discharger community through 2011
- Since 2012, my role as technical consultant for the Spokane River Regional Toxics Task Force has prohibited my work as an advocate on DO TMDL issues

Summary

- DO TMDL required most NPDES dischargers to meet monthly average TP of 50 ug/l
- TMDL allowed alternate limits, as long as they resulted in *equivalent DO impacts* in Long Lake
- Alternate limits were assessed and approved for several permits, by:
 - extending period of more rigorous TP treatment
 - offsetting higher TP with lower CBOD, ammonia

Defining Equivalent DO Impact

- Spokane DO TMDL was unique
 - Even with point sources at extremely stringent treatment, DO standard (<0.2 mg/l anthropogenic impact) would not be met
 - Responsibility was assigned to Avista to address remaining anthropogenic impacts above 0.2 mg/l
- "Equivalent DO impact" defined as "no increase in Avista responsibility"

Avista Responsibility

- CE-QUAL-W2 divides the system into segments
- Avista responsibility was determined by comparing model results for DO over the course of a year for two scenarios
 - No Sources
 - TMDL Scenario

Avista Responsibility

• Avista has responsibility for segments/times when the difference between runs was greater than 0.2 mg/l

	Segment	nt June 1-15 June 15-30		ine 15-30	July 1-15			July 16-31			Aug 1-15			Aug 16-31			Sept 1-15		5	
	157	9.23	9.40 _	9.44	9.66	8.94	9.46	-	8.93	9.43	-	9.06	9.55	-	9.22	9.93	-	9.40	9.96	-
	158	9.42	9.66 _	9.42	9.79 _	9.06	9.49	-	9.11	9.60	-	9.14	9.65	-	9.31	9.84	-	9.46	9.99	-
	159	9.54	9.84 _	9.46	9.86 _	9.13	9.53	-	9.19	9.62	-	9.19	9.63	-	9.32	9.78	-	9.47	9.93	-
	160	9.57	9.88 _	9.45	9.85 _	9.12	9.47	-	9.19	9.58	-	9.18	9.56	-	9.30	9.70	-	9.44	9.87	-
Bold	161	9.56	9.87 _	9.51	9.94 _	9.16	9.52	-	9.19	9.57	-	9.19	9.55	-	9.30	9.68	-	9.45	9.84	-
Dolu.	162	9.56	9.89 _	9.55	10.01 _	9.16	9.53	-	9.18	9.59	-	9.18	9.53	-	9.26	9.61	-	9.41	9.79	-
	163	9.58	9.96 _	9.59	10.06 _	9.18	9.56	-	9.17	9.63	-	9.17	9.53	-	9.18	9.52	-	9.31	9.73	-
	164	9.61	10.03 _	9.58	10.08 _	9.15	9.52	-	9.14	9.62	-	9.13	9.47	-	9.10	9.37	-	9.20	9.62	
It all and	165	9.62	10.05 _	9.57	10.10 _	9.06	9.38	-	9.09	9.53	-	9.07	9.36	-	8.96	9.12	-	9.11	9.50	
Italics:	166	9.59	10.03 _	9.51	10.03 _	8.87	9.07	-	8.98	9.30	-	8.97	9.15	-	8.82	8.85	-	9.07	9.38	-
	167	9.59	10.03 _	9.48	9.98 _	8.73	8.87	-	8.84	9.07	-	8.87	8.97	-	8.69	8.63	-	9.01	9.27	
No Source DO	168	9.61	10.10 _	9.43	9.91 _	8.52	8.58	-	8.55	8.63	-	8.66	8.57	-	8.44	8.20	<u>0.0</u>	8.95	9.11	
	169	9.62	10.16 _	9.37	9.82 _	8.41	8.41	-	8.36	8.37	-	8.47	8.31	-	8.25	7.92	<u>0.1</u>	8.85	8.91	-
	170	9.60	10.18 _	9.28	9.72 _	8.37	8.36	-	8.27	8.23	-	8.37	8.17	-	8.13	7.71	<u>0.2</u>	8.69	8.66	
Yellow shade:	171	9.58	10.17 _	9.23	9.66 _	8.40	8.39	-	8.23	8.17	-	8.31	8.07	<u>0.0</u>	8.04	7.55	<u>0.3</u>	8.57	8.43	
	172	9.50	10.08 _	9.08	9.46 _	8.23	8.17	-	7.96	7.80	-	7.98	7.63	<u>0.2</u>	7.70	7.07	<u>0.4</u>	8.35	8.06	<u>0.1</u>
	173	9.40	9.96 _	8.96	9.31 _	8.12	8.00	-	7.80	7.55	0.0	7.80	7.36	0.2	7.51	6.78	0.5	8.15	7.75	0.2
Avista	174	9.29	9.80 _	8.81	9.12 _	7.96	7.79	-	7.59	7.27	<u>0.1</u>	7.56	7.05	0.3	7.26	6.42	0.6	7.85	7.34	<u>0.3</u>
cochoncibility	1/5	9.20	9.68	8.69	8.99 _	7.86	7.66	-	7.46	7.09	0.2	7.40	6.84	0.4	7.09	6.21	0.7	7.62	7.04	0.4
responsibility,	1/6	9.12	9.59 _	8.63	8.91 _	7.83	7.60	0.0	7.41	6.99	0.2	7.39	6.79	0.4	7.06	6.13	0.7	7.55	6.91	0.4
e difference	1//	8.93	9.31 _	8.35	8.54 _	7.50	7.19	0.1	6.99	6.46	0.3	6.92	6.22	0.5	6.56	5.54	0.8	7.01	6.24	0.6
	1/8	8.85	9.21 _	8.27	8.42 _	7.44	7.10	0.1	6.92	6.34	0.4	6.88	6.15	0.5	6.51	5.47	0.8	6.89	6.06	0.6
between two	1/9	8.79	9.14 _	8.24	8.37 _	7.42	7.07	0.1	6.88	6.27	0.4	6.86	6.11	0.6	6.51	5.44	0.9	6.81	5.92	0.7
constinc 0.2	100	0.75	9.05	0.19	0.30 _	7.30	7.02	0.2	0.03	6.19	0.4	0.01	0.03 5.00	0.6	6.49	5.42	0.9	0.07	5.75	0.7
	101	0.00	8.95 <u>-</u>	0.15	0.21	7.30	7.01	0.2	0.70	6.00	0.5	6.79	5.09	0.0	6.56	5.50	0.9	0.52	5.55	0.8
	182	0.07	0.95 _	8.10	7.09	7.41	6.85	0.2	6.70	0.13 5.07	0.5	6.59	5.92	0.7	6.37	5.40	0.9	6.20	5.52	0.8
	103	0.55	0.70 _ 0.75	7.00	7.30 _	7.20	6.00	0.2	6.77	5.97	0.5	6.63	5.09	0.7	6.42	5.25	0.9	6.20	5.27	0.8
	104	0.54	0.75	7.90	7.94 _	7.30	6.00	0.2	6.79	6.00	0.6	6.05	5.71	0.7	6.43	5.35	0.9	6.30	5.34	0.8
	186	8 34	8.03	7.94	7.07 _	7.29	6.76	0.2	6.63	5.84	0.6	6.37	5.04	0.8	6.24	5.08	1.0	5.96	J.27 1 93	0.8
	187	8 31	8.40	7.85	7.75	7.10	6.70	0.2	6.66	5.83	0.6	6.36	5 35	0.8	6.27	5.05	1.0	5.96	4.90	0.0
	188	8.20	8.25	7.67	7.56	7.10	6.65	0.2	6.53	5.71	0.6	6.15	5.17	0.8	6.07	4.88	1.0	5.73	4.68	0.8
	100	0.20	0.20 -	//	1.50 -	7.10	0.00	0.2	0.00	3.11	0.0	0.10	3.11	0.0	0.07	4.00	1.0	3.75	1.00	0.0

Equivalence with Avista Responsibility

- EPA/Ecology defined three rules to determine whether the results of a modeled scenario were "equivalent" with the TMDL
 - Must not increase the spatial or temporal extent of Avista responsibilities*
 - 2. Must not decrease the DO concentration averaged across all Avista-affected segments and times.
 - 3. Must not increase Avista's responsibility in any segment or time*

*After results are averaged to the nearest 0.1 mg/l

Avista Responsibility

• Avista has responsibility for segments/times when the difference between runs was greater than 0.2 mg/l

	Segment	nt June 1-15 June 15-30		ine 15-30	July 1-15			July 16-31			Aug 1-15			Aug 16-31			Sept 1-15		5	
	157	9.23	9.40 _	9.44	9.66	8.94	9.46	-	8.93	9.43	-	9.06	9.55	-	9.22	9.93	-	9.40	9.96	-
	158	9.42	9.66 _	9.42	9.79 _	9.06	9.49	-	9.11	9.60	-	9.14	9.65	-	9.31	9.84	-	9.46	9.99	-
	159	9.54	9.84 _	9.46	9.86 _	9.13	9.53	-	9.19	9.62	-	9.19	9.63	-	9.32	9.78	-	9.47	9.93	-
	160	9.57	9.88 _	9.45	9.85 _	9.12	9.47	-	9.19	9.58	-	9.18	9.56	-	9.30	9.70	-	9.44	9.87	-
Bold	161	9.56	9.87 _	9.51	9.94 _	9.16	9.52	-	9.19	9.57	-	9.19	9.55	-	9.30	9.68	-	9.45	9.84	-
Dolu.	162	9.56	9.89 _	9.55	10.01 _	9.16	9.53	-	9.18	9.59	-	9.18	9.53	-	9.26	9.61	-	9.41	9.79	-
	163	9.58	9.96 _	9.59	10.06 _	9.18	9.56	-	9.17	9.63	-	9.17	9.53	-	9.18	9.52	-	9.31	9.73	-
	164	9.61	10.03 _	9.58	10.08 _	9.15	9.52	-	9.14	9.62	-	9.13	9.47	-	9.10	9.37	-	9.20	9.62	
It all and	165	9.62	10.05 _	9.57	10.10 _	9.06	9.38	-	9.09	9.53	-	9.07	9.36	-	8.96	9.12	-	9.11	9.50	
Italics:	166	9.59	10.03 _	9.51	10.03 _	8.87	9.07	-	8.98	9.30	-	8.97	9.15	-	8.82	8.85	-	9.07	9.38	-
	167	9.59	10.03 _	9.48	9.98 _	8.73	8.87	-	8.84	9.07	-	8.87	8.97	-	8.69	8.63	-	9.01	9.27	
No Source DO	168	9.61	10.10 _	9.43	9.91 _	8.52	8.58	-	8.55	8.63	-	8.66	8.57	-	8.44	8.20	<u>0.0</u>	8.95	9.11	
	169	9.62	10.16 _	9.37	9.82 _	8.41	8.41	-	8.36	8.37	-	8.47	8.31	-	8.25	7.92	<u>0.1</u>	8.85	8.91	-
	170	9.60	10.18 _	9.28	9.72 _	8.37	8.36	-	8.27	8.23	-	8.37	8.17	-	8.13	7.71	<u>0.2</u>	8.69	8.66	
Yellow shade:	171	9.58	10.17 _	9.23	9.66 _	8.40	8.39	-	8.23	8.17	-	8.31	8.07	<u>0.0</u>	8.04	7.55	<u>0.3</u>	8.57	8.43	
	172	9.50	10.08 _	9.08	9.46 _	8.23	8.17	-	7.96	7.80	-	7.98	7.63	<u>0.2</u>	7.70	7.07	<u>0.4</u>	8.35	8.06	<u>0.1</u>
	173	9.40	9.96 _	8.96	9.31 _	8.12	8.00	-	7.80	7.55	0.0	7.80	7.36	0.2	7.51	6.78	0.5	8.15	7.75	0.2
Avista	174	9.29	9.80 _	8.81	9.12 _	7.96	7.79	-	7.59	7.27	<u>0.1</u>	7.56	7.05	0.3	7.26	6.42	0.6	7.85	7.34	<u>0.3</u>
cochoncibility	1/5	9.20	9.68	8.69	8.99 _	7.86	7.66	-	7.46	7.09	0.2	7.40	6.84	0.4	7.09	6.21	0.7	7.62	7.04	0.4
responsibility,	1/6	9.12	9.59 _	8.63	8.91 _	7.83	7.60	0.0	7.41	6.99	0.2	7.39	6.79	0.4	7.06	6.13	0.7	7.55	6.91	0.4
e difference	1//	8.93	9.31 _	8.35	8.54 _	7.50	7.19	0.1	6.99	6.46	0.3	6.92	6.22	0.5	6.56	5.54	0.8	7.01	6.24	0.6
	1/8	8.85	9.21 _	8.27	8.42 _	7.44	7.10	0.1	6.92	6.34	0.4	6.88	6.15	0.5	6.51	5.47	0.8	6.89	6.06	0.6
between two	1/9	8.79	9.14 _	8.24	8.37 _	7.42	7.07	0.1	6.88	6.27	0.4	6.86	6.11	0.6	6.51	5.44	0.9	6.81	5.92	0.7
constinc 0.2	100	0.75	9.05	0.19	0.30 _	7.30	7.02	0.2	0.03	6.19	0.4	0.01	0.03 5.00	0.6	6.49	5.42	0.9	0.07	5.75	0.7
	101	0.00	8.95 <u>-</u>	0.15	0.21	7.30	7.01	0.2	0.70	6.00	0.5	6.79	5.09	0.0	6.56	5.50	0.9	0.52	5.55	0.8
	182	0.07	0.95 _	8.10	7.09	7.41	6.85	0.2	6.70	0.13 5.07	0.5	6.59	5.92	0.7	6.37	5.40	0.9	6.20	5.52	0.8
	103	0.55	0.70 _ 0.75	7.00	7.30 _	7.20	6.00	0.2	6.77	5.97	0.5	6.63	5.09	0.7	6.42	5.25	0.9	6.20	5.27	0.8
	104	0.54	0.75	7.90	7.94 _	7.30	6.00	0.2	6.79	6.00	0.6	6.05	5.71	0.7	6.43	5.35	0.9	6.30	5.34	0.8
	186	8 34	8.03	7.94	7.07 _	7.29	6.76	0.2	6.63	5.84	0.6	6.37	5.04	0.8	6.24	5.08	1.0	5.96	J.27 1 93	0.8
	187	8 31	8.40	7.85	7.75	7.10	6.70	0.2	6.66	5.83	0.6	6.36	5 35	0.8	6.27	5.05	1.0	5.96	4.90	0.0
	188	8.20	8.25	7.67	7.56	7.10	6.65	0.2	6.53	5.71	0.6	6.15	5.17	0.8	6.07	4.88	1.0	5.73	4.68	0.8
	100	0.20	0.20 -	//	1.50 -	7.10	0.00	0.2	0.00	3.11	0.0	0.10	3.11	0.0	0.07	4.00	1.0	3.75	1.00	0.0

Alternate Limits Evaluated

- Post Falls, HARSB, and Inland Empire Paper
 Extend rigorous TP removal into February
- Coeur d'Alene
 - Extend rigorous TP removal into February
 - More stringent CBOD removal, extended into February
- Spokane County
 - Extend rigorous CBOD removal into February
 - Seasonally varying ammonia limits

Results of Evaluation

- Combined scenario:
 - 1. Did not increase the spatial or temporal extent of Avista responsibilities
 - 2. Improved the dissolved oxygen when averaged over all segments/times of Avista responsibility
 - 3. With 3 exceptions, did not increase Avista's responsibility in any segment or time, after results are rounded to 0.1 mg/l.

Exceptions Deemed Insignificant

- Three cases where Avista responsibility increased:
 - Outweighed by five cases of decreased responsibility

Segment	Time Period	Change in Avista Responsibility
188	July 1-15	Increase
188	September 1-15	Increase
186	September 16-30	Increase
172	August 1-15	Decrease
177	September 1-15	Decrease
185	September 1-15	Decrease
175	September 16-30	Decrease
180	September 16-30	Decrease

 Magnitude of increased responsibility is smaller than known model error

Closing Comments

- Existing model has been used to support alternate effluent limits
- Nature of the TMDL and water quality standards poses some unique challenges
 - Determination of "equivalence" with the TMDL is not necessarily straightforward
 - Compliance with lake standards cannot be assessed solely by monitoring – requires a model

