AVISTA CORPORATION

LAKE SPOKANE DISSOLVED OXYGEN WATER QUALITY ATTAINMENT PLAN FIVE YEAR REPORT

WASHINGTON 401 CERTIFICATION FERC LICENSE APPENDIX B, SECTION 5.6

SPOKANE RIVER HYDROELECTRIC PROJECT FERC PROJECT NO. 2545

Prepared By:

March 24, 2017

[Page intentionally left blank]

TABLE OF CONTENTS

1.0	INTRODUCTION	l
2.0	BASELINE MONITORING	3
2.1	2016 Monitoring Results	3
2.2	Assessment of Lake Spokane Water Quality (2010 – 2016)	7
2.3	Monitoring Recommendations	3
3.0	IMPLEMENTATION ACTIVITIES)
3.1	Studies)
3.1.1	Carp Population Reduction Program10)
3.1.2	Aquatic Weed Management10)
3.2	2016 Implementation Measures	L
3.2.1	Carp11	l
3.2.2	Wetlands	2
3.2.3	Native Tree Planting	3
3.2.4	Land Protection	3
3.2.5	Rainbow Trout Stocking 14	1
3.2.6	Bulkhead Removal14	1
3.2.7	Education14	1
4.0	EFFECTIVENESS OF IMPLEMENTATION ACTIVITIES	5
5.0	PROPOSED ACTIVITIES FOR 2017 15	5
6.0	SCHEDULE	7
7.0	REFERENCES	l

FIGURES

Figure 1	Lake Spokane Baseline Monitoring Stations
Figure 2	Total Inflows into Lake Spokane 2010 – 2016 (TetraTech 2017)
Figure 3	Revised DO WQAP Implementation Schedule

APPENDICES

 Appendix A Lake Spokane Annual Summary & Five-Year Assessment, 2016 Baseline Water Quality Monitoring Results And Assessment of Water Quality 2010 – 2016
 Appendix B Agency Consultation [Page intentionally left blank]

1.0 INTRODUCTION

The Washington Department of Ecology (Ecology) has determined that the dissolved oxygen (DO) levels in certain portions of the Spokane River and Lake Spokane do not meet Washington's water quality standards. Consequently, those portions of the river and lake are listed as impaired water bodies under Section 303d of the Clean Water Act. To address this, Ecology developed the Spokane River and Lake Spokane Dissolved Oxygen Total Maximum Daily Load Water Quality Improvement Report (issued February 12, 2010).

Reduced DO levels are largely due to the discharge of nutrients into the Spokane River and Lake Spokane. Nutrients are discharged into the Spokane River and Lake Spokane by point sources, such as waste water treatment facilities and industrial facilities, and from non-point sources, such as tributaries, groundwater, and stormwater runoff, relating largely to land-use practices.

Avista Corporation (Avista) owns and operates the Spokane River Hydroelectric Project (Project), which consists of five dams on the Spokane River, including Long Lake Hydroelectric Development (HED) which creates Lake Spokane. Avista does not discharge nutrients into either the Spokane River or Lake Spokane. However, the impoundment creating Lake Spokane increases the residence time for water flowing down the Spokane River, and thereby influences the ability of nutrients contained in those waters to reduce DO levels.

Avista received a new, 50-year license for the Project from the Federal Energy Regulatory Commission (FERC) on June 18, 2009 (FERC 2009). The license incorporates a water quality certification (Certification) issued by Ecology under Section 401 of the Clean Water Act (Ecology 2009). As required by Section 5.6.C of the Certification, Avista submitted an Ecologyapproved Lake Spokane Dissolved Oxygen Water Quality Attainment Plan (DO WQAP) to FERC on October 8, 2012. Avista began implementing the DO WQAP upon receiving FERC's December 19, 2012 approval.

DO WQAP

The DO WQAP addresses Avista's proportional level of responsibility as determined in the Spokane River and Lake Spokane Dissolved Oxygen Total Maximum Daily Load (DO TMDL). It identified nine potentially reasonable and feasible measures to improve DO conditions in Lake Spokane, by reducing non-point source phosphorus loading into Lake Spokane. It also incorporated an implementation schedule to analyze, evaluate and implement such measures. In addition, it contains benchmarks and reporting sufficient for Ecology to track Avista's progress toward implementing the plan within the ten-year compliance period.

The DO WQAP included a prioritization of the nine reasonable and feasible mitigation measures based upon several criteria including, but not limited to, quantification of the phosphorus load

reduction, DO response time, likelihood of success, practicality of implementation, longevity of load reduction, and assurance of obtaining credit. From highest to lowest priority, the following summarizes the results of the measure prioritization: reducing carp populations; managing aquatic weeds; acquiring, restoring, and enhancing wetlands; reducing phosphorus from Hangman Creek sediment loads; educating the public on improved septic system operations; reducing lawn area and providing native vegetation buffers; and converting grazing land to conservation or recreation use. One measure, which involved modifying the intake of an agricultural irrigation system, was removed from the list, as it was determined infeasible given it would likely create an adverse effect on crop production.

Based on preliminary evaluations, Avista proposed to focus its initial efforts on two measures: reducing carp populations and aquatic weed management, which were expected to have the greatest potential for phosphorus reduction.

In its 2014 Annual Summary Report, Avista included a recommendation to implement a pilot study utilizing a combination of mechanical methods (including spring electrofishing, passive netting, and winter seining), to identify which is the most effective method to remove carp from Lake Spokane. Ecology approved the 2014 Annual Report and the recommendation to move forward with the carp removal pilot study. Avista has been working with Ecology and WDFW to plan the carp removal efforts, a summary of which is provided in Section 3.2 (2016 Implementation Measures) and Section 5.0 (Proposed Activities for 2017).

In its 2013 Annual Summary Report, Avista concluded that harvesting macrophytes in Lake Spokane at senescence, would not be a reasonable and feasible mitigation measure to reduce total phosphorus in Lake Spokane. However, Avista will continue to implement winter drawdowns, herbicide applications at public and community lake access sites, and bottom barrier placement to control invasive/noxious aquatic weeds within Lake Spokane. Avista may also, through adaptive management, reassess opportunities to harvest macrophytes to control phosphorus in the future.

As required by the DO WQAP, this report provides a Five Year Report which broadly assesses the progress made towards improving Lake Spokane's water quality through the implementation of the selected reasonable and feasible measures. The water quality evaluation includes monitoring and modeling results, as available, and addresses year to year variability and trend analyses. In addition, the report includes the 2016 baseline monitoring, implementation activities, effectiveness of the implementation activities, and proposed actions for 2017. The report however does not include modeling results, as Avista did not run the CE-QUAL-W2 hydrodynamic and water quality model (CE-QUAL-W2 model) during 2016, based upon Ecology's determination that water quality improvements, as identified in the DO TMDL, need

to occur in the upstream watershed prior to running the model. With this, the DO WQAP Implementation Schedule was then revised accordingly (revised March 2016).

2.0 BASELINE MONITORING

Longitudinally, the lake can be classified as having three distinct zones which consist of a riverine, transition and lacustrine zone. Six monitoring stations, LL5 through LL0, exist within these three zones (**Figure 1**). Station LL5 is the most upstream station and is located within a riverine zone, Stations LL3 and LL4 are located in the transition zone, and Stations LL0 through LL2 are located in the lacustrine zone. The vertical structure of Lake Spokane is set up by thermal stratification, largely determined by its inflow rates and temperature, climate, and location of the powerhouse intake. Within Lake Spokane's lacustrine zone, thermal stratification creates three layers (the epilimnion, metalimnion, and hypolimnion) that are generally present between late spring and early fall. The epilimnion is the uppermost layer, and the warmest due to solar radiation. The metalimnion contains the thermocline and is the transition layer between the epilimnion and the hypolimnion that is influenced by both surface and interflow inflows. The hypolimnion is the deepest layer and is present throughout the lacustrine zone.

2.1 2016 Monitoring Results

Avista contracted with Tetra Tech to complete the baseline monitoring activities during 2016. Sample events were completed at all six stations during May through October. Results of the monitoring are summarized in **Appendix A** (Lake Spokane Annual Summary and Five-Year Assessment, 2016 Baseline Water Quality Monitoring Results And Assessment of Water Quality 2010 – 2016, Tetra Tech 2017) and include the water quality conditions in Lake Spokane as well as for its inflows and outflows, tables of water quality data collected for the DO WQAP, a description of the general hydrologic and climatic conditions, and an analysis of the phytoplankton and zooplankton populations present during the 2016 sampling events. Highlights taken from the Tetra Tech Report are provided as follows.

• Weather conditions during 2016 differed greatly from the 30-year norms reported at the Spokane International Airport, with cooler than normal temperatures at the start of the year, in the middle of June, and in September and warmer than normal temperatures in February through June, August, and November. The Spokane region experienced drought conditions, with below normal precipitation which started in June and continued into September. August was the warmest month of the year, with an average temperature of 71.2°F. Precipitation was above normal during most of the early spring and late winter. October saw above normal precipitation, breaking the monthly and daily rainfall records in Spokane.

- Peak flows in 2016 (18,200 cfs) were significantly smaller than those observed in 2011 and 2012, slightly smaller than in 2014 and 2015, and similar in magnitude to those in 2013 (**Figure 2**). Peak flow in 2016, however, occurred in March with an earlier peak at the middle of February, approximately two months earlier than normal. The annual mean daily flow during 2016 was 6,858 cfs.
- Whole lake water residence time during 2016 (June through October) in Lake Spokane was higher than previous years at 43.3, except than in 2015 (70.1 days). Comparatively, average whole lake water residence time (June through October) during 2010 through 2014 was 25 days. Average whole reservoir residence time was 34.2 days for the past seven years (2010 through 2016). Using the DO TMDL seasonal timeframe of July through September, the whole lake residence time was calculated at 66.8 days, which was less than in 2015 (84.8 days), but higher than 2010-2014.
- Thermal stratification was evident the first sampling event in May at the four downstream stations, LL3, LL2, LL1, and LL0. Stratification was present at all stations, except LL5, by the first sampling event in June, although stratification was weak at LL4. Stratification was present at station LL5 by the second sampling event in July. The water column remained stratified at LL4 until October and at LL5 through the beginning of September. This contrasted with conditions in 2015, when stratification was present from the first sampling event in June through the beginning of September.
- While the extent and depth of the hypolimnion varied throughout the summer, for most of the sampling dates the hypolimnion depth occurred at about 10 to 15 meters (m) from the surface, being shallow in June and deepening later in the summer.
- The maximum temperature reached at the surface was 23°C in the upper reservoir in early August and 23°C in the lacustrine zone during early June. These maximum temperatures are slightly lower than those observed in 2015 (26°C and 25°C in early July) and in 2014 (25°C in early August). Temperatures were below 20°C at depths greater than 10 m in the lacustrine zone during 2016, as was the case in 2013, 2014, and 2015.
- Conductivity varied from about 87 to 297 micro Siemens/cm (μ S/cm) which was similar to 2015 levels (106 to 290 μ S/cm). Conductivity was lower in 2014, ranging from 69 to 270 μ S/cm. The difference was likely due to lower river flows in 2015 and 2016, resulting in a stronger signature from groundwater compared with inflows from the river. During 2016, water with increased conductivity (150 to 287 μ S/cm), comprised the interflow zone that extended from about 7 to 18 m at stations LL3 through LL0 in June, and extended to 39 m at LL0 in September as higher conductivity water plunged and moved through the reservoir at those depths intervals. Below 30 m, conductivity was less than 150 μ S/cm. Much of the metalimnion in the lower reservoir was composed of interflow.

- The water column profiles for pH showed a range of 6.7 to 9.0 at the six stations during 2016 with the highest pH values occurred in the epilimnion during August. Water column averages were much narrower, ranging from 7.3 to 8.1.
- Maximum epilimnetic DO concentrations ranged from 11.4 to 12.2 milligrams per liter (mg/L) at the six stations, with higher values occurring in the lacustrine zone. Average water column DO ranged from 7.3 to 10.2 mg/L. Minimum DO concentrations of 0.0 mg/L occurred near the bottom at the two deepest stations, LLO (~154 ft) and LL1 (~108 ft). Minimum DO concentrations in 2013 and 2016 were the lowest observed of the seven years sampled (2010-2016).
- Total phosphorus (TP) concentrations ranged from 3 to 122 micrograms per liter (μ g/L) during 2016. Soluble reactive phosphorus (SRP) concentrations ranged from non-detect (1.0 μ g/L) to 56 μ g/L. TP and SRP were usually highest at stations LL0, LL1, and LL2 in the hypolimnion (15 m and deeper) with higher levels usually starting in July and decreasing in late August and September. The highest TP concentration (122 μ g/L) was at station LL0 at one meter off the bottom in early August. Epilimnetic TP concentrations in the lacustrine zone (LL0, LL1, LL2) were consistently around 10 μ g/L or less throughout the monitoring period. Surface TP did not exceed 27 μ g/L. Volume-weighted water column TP concentrations for all stations was below 25 μ g/L.
- Total nitrogen (TN) concentrations at all six stations ranged from 450 to 2,760 µg/L over the monitoring period, with most of the TN consisting of nitrate+nitrite. The average lacustrine epilimnetic TN and nitrate+nitrite concentrations during June through September were 912 and 683 µg/L, respectively. It should be noted, the TN and nitrate+nitrite concentrations measured at Ecology's Nine Mile and Little Spokane Stations (54A090 and 55B070) were high with most being nitrate+nitrate, roughly matched the levels in the metalimnion and hypolimnion of the lacustrine zone. This suggests that plunging river inflows were the source of the high summer N concentrations in the reservoir, with groundwater being an important contributor.
- Chlorophyll concentrations at the six stations ranged from 0.5 to 14.4 μ g/L in 2016. Chlorophyll maximums at the lacustrine, transition, and riverine sites were slightly lower than in 2015. Chlorophyll was often highest at the 5 m depth (or 4 m depth at LL4) in 2016, which was the case in 2012 through 2015. However, chlorophyll differed more seasonally than with depth at the two up-reservoir sites, where maximums occurred in August and September, similar to conditions during both 2013, 2014, and 2015. The maximum chlorophyll concentration observed (14.4 μ g/L) in 2016 was at 4 m at LL4 during early August. For comparison, the seven year maximum of 25.4 μ g/L was observed in 2014.
- Transparency ranged from 2.2 to 9.2 m throughout the reservoir during 2016, and appears to be affected largely by phytoplankton abundance (except during May).

- Phytoplankton density and biovolume were much greater at all stations in 2016 and 2015 than the other years. This likely reflects the longer residence times documented for the whole reservoir during 2016 and 2015 (70 and 43 days, respectively) as compared to 2010 2014. The composition of the phytoplankton taxa showed diatoms (*Chrysophyta*) to be dominant at all the stations during spring, based on both cell counts and biovolume. Cyanobacteria (blue-green algae) increased numerically (cells/ml) at all sites in July and August, but were represented by significant biovolume at LL5 only in late July and late August. The 2016 pattern is similar to 2012, 2014, and 2015 when diatoms dominated during the spring at all sites, but cyanobacteria dominated cell counts at all sites in early summer in 2015 and late summer in 2012-2014. Diatoms and green algae tended to represent the greatest biovolume at most sites in 2016.
- Similar to 2014, there were no observed algal scums just downstream of LL5 and in between LL4 and LL5. This contrasts with 2015, where algal scums were observed just downstream of LL5 and in between LL4 and LL5 starting in early August. Scums were absent in 2016 even though residence time was longer (43 days) than in 2010 and 2012. Due to the lack of an observed scum, the Lake Spokane Association did not collect samples for toxicity during 2016.

Tetra Tech also completed a cursory review of Lake Spokane's aquatic habitat specific to Washington's designated aquatic life use, core summer salmonid habitat using the baseline nutrient monitoring data collected in 2016. Tetra Tech used a critical maximum temperature (18°C) and a minimum DO (6 mg/L) to compute the percent volume acceptable for growth for rainbow trout at the six stations for 2016 (Tetra Tech 2017, Figures 96-101). For the majority of the summer, between 10 and 20 m, DO was usually near or above 6 mg/L at the four deepest stations (LL0, LL1, LL2, and LL3). In late August and September at LL0, DO dropped to near or below the often cited required minimum of 5 mg/L between 10 and 20 m and was even lower at deeper depths. However, at the other deep stations DO remained above 5 mg/L. These data suggest that rainbow trout are most likely inhabiting cooler water in the metalimnion and upper portions of the hypolimnion. Additionally, the habitat volumes for temperature and DO together, as well as separately, were shown to indicate which factor appears most limiting. The data suggest that trout were limited earlier in the summer at the deeper stations by temperature and then more so by DO concentrations as the summer progressed in 2016 (Figures 96-98). Trout were limited exclusively by temperature at the shallower stations (Figures 99-101). The above temperature and DO results suggest that trout likely avoid the epilimnion during most of the summer due to temperatures that reached 25°C and likely seek cooler water deeper than 10 m. However, to obtain site specific water quality limitations on fish habitat in Lake Spokane, a more thorough analysis would need to be completed.

2.2 Assessment of Lake Spokane Water Quality (2010 – 2016)

In accordance with the DO WQAP, an assessment of water quality for data collected from 2010 through 2016 and is summarized in **Appendix A**. The assessment addresses year to year variability and trend analysis specific to the following parameters: DO, phosphorus, nitrogen, trophic state, and fish habitat. Results of these analyses are discussed in **Appendix A** and are summarized below. The approaches used by TetraTech provide valuable information. Avista anticipates these or other approaches, along with the goals of the DO TMDL, will be used to determine compliance with the surface water quality standards at the end of the 10-year compliance schedule.

- The minimum volume-weighted hypolimnetic DO has substantially increased since 1977. In 1978, the City of Spokane's wastewater treatment plant implemented an 85% reduction in point-source TP in their discharge water. Prior to the TP reduction, minimum volume-weighted hypolimnetic DO ranged from 0.2 to 3.4 mg/L (1972 – 1977). Following the TP reduction, minimum volume-weighted hypolimnetic DO ranged from 2.5 to 4.5 mg/L (1978 – 1985). The current (2010 – 2016) minimum volume-weighted hypolimnetic DO ranged from 5.1 to nearly 8 mg/L, and averaged 6.3 mg/L with inflow TPs averaging 14.7 μg/L.
- Summer mean TP decreased slightly through the reservoir in all seven years with the lowest TP usually at station LL0. Area-weighted, whole-reservoir epilimnetic TPs averaged $11.3 \pm 1.6 \ \mu g/L$ for the seven years, a variation of only 14% and with no evident trend. Area-weighted whole-reservoir epilimnetic TP was lowest in 2016 with 8.9 $\mu g/L$ and highest in 2013 with 13.4 $\mu g/L$. Summer (June to September) hypolimnetic TPs have been rather consistent the past seven years, with a mean of 24.8 $\mu g/L \pm 16\%$. Maximum hypolimnetic TPs have been relatively low the past seven years usually less than 35 $\mu g/L$, and the average volume-weighted hypolimnetic TP was only 23.4 $\mu g/L$ (May-October). The lowest concentrations were in 2011 while the highest were in 2016.
- Epilimnetic mean TN concentrations in summer (June to September) 2015 and 2016 were higher at LL0, LL1, LL2, and LL3 than the previous five years. Summer epilimnetic mean TN concentrations at LL4 were lowest in 2012 through 2015 and highest in 2010, while the near opposite occurred at LL5, with the lowest concentrations occurring in 2010 and highest in 2014 and 2016. Additionally, the data suggests that TN concentrations have been increasing in the Spokane River for several decades, which may be due to the lower river flows and greater influence of groundwater.
- The lake's tropic state, a general measure of biological production (utilizing concentrations of TP, chlorophyll, water clarity, etc.) is near borderline oligotrophic-mesotrophic on average in all zones for the last seven years, with the exception of the TP concentrations in

Five Year Report

the transition and riverine zones. The average TP and chl in the transition and riverine zones were usually slightly greater than the oligotrophic-mesotrophic boundary (10 μ g/L). The trophic state of the lake is an important index to measure, especially when evaluating the lake's habitat. A eutrophic state indicates high biological production within the lake, an oligotrophic state indicates low biological production, and mesotrophic is between those two states.

• A cursory review of Lake Spokane's aquatic habitat specific to Washington's designated aquatic life use, core summer salmonid habitat using the baseline nutrient monitoring data collected over the past seven years, suggests temperature restricted habitat for rainbow trout during spring and early summer far more than did DO at all sites and that temperature continued to be more limiting than DO for the rest of much of the year at the shallower sites. That said, there appears to be a greater restriction by DO at LL0 during late July, August, and early September than at any of the other sites with more acceptable habitat available further upstream at LL1, LL2, and LL3.

2.3 Monitoring Recommendations

In accordance with the DO WQAP, following completion of the 2016 nutrient monitoring season, Avista and Ecology evaluated the results and success of monitoring baseline nutrient conditions in Lake Spokane. In order to gain a better understanding of core summer salmonid habitat in Lake Spokane, Avista proposes to expand the 2017 and 2018 sampling program.

In 2017, Avista plans to initiate a multi-year fish population and habitat assessment in Lake Spokane, the area impounded by Long Lake Dam (see Figure 2, the red area outlined as the Long Lake HED Project Boundary) to gain an understanding of the status of the rainbow trout population in the lake and determine habitat utilization. Avista is developing a broad study plan for the lake that outlines the overall project objectives, with specific techniques and logistics, in coordination with the Washington Department of Fish and Wildlife (WDFW). This includes the following three components: (1) determining whether stocked rainbow trout survive the summer and maintain healthy body conditions; (2) identifying the water quality conditions that are currently present; and (3) identifying the precise coordinates and depth rainbow trout occupy.

To address the first component, Avista plans on tagging a large number of the stocked rainbow trout that are planted in the lake with individually numbered identification (ID) tags. As fish are being released in the lake, a subsample of fish will be collected to measure weight and length. The body condition of the subsample of fish will be extrapolated to establish a baseline condition for all the tagged fish. Avista will then re-collect the fish. Presently Avista anticipates re-collecting these fish during creel survey angler interviews and voluntary angler returns. During re-collection, fish will be identified by the ID tag number and measured for weight and length.

The change in weight and length of individual fish will be used to determine growth rate and body condition. The number of ID tags re-collected in comparison with the total number tagged will be used to estimate the total population.

The second component includes continuing the baseline nutrient monitoring, during 2017, in accordance with the Ecology approved Quality Assurance Project Plan for Lake Spokane Nutrient Monitoring (Tetra Tech 2014). We anticipate the results of this data will be utilized to help assess the CE-QUAL-W2 model output data. Avista will work with Ecology to determine whether or not to continue baseline nutrient monitoring during 2018, following the 2017 monitoring season.

The third component will be to identify what location and depth rainbow trout are occupying seasonally. The exact method for this component is still being explored, but will either be done by acoustic tagging and tracking the fish or sampling at strategic locations in the lake to see if fish are present. If a tracking study is selected, stocked rainbow trout will be tagged with acoustic radio tags that identify location as well as water column depth and temperature. Tagged fish will then be manually tracked at set intervals throughout the summer. The tracking will show the approximate latitude and longitude of individual fish along with the water depth and temperature the fish is utilizing. We anticipate these data will be compared to the hydrodynamics established with the CE-QUAL-W2 model to assess what water characteristics the fish inhabits.

The alternative technique used to identify the location of fish would be actively sampling for fish. To accomplish this, nets would be set at strategic locations, both around the lake and within the water column, with varying water quality characteristics to determine presence/absence at these locations.

The compilation of the data collected for these three components will be used to illustrate Lake Spokane's rainbow trout population vitality while directly relating the lake's water quality to fish occupancy. We anticipate sampling to occur over two years (2017 and 2018), in order to collect the amount of data needed to draw reliable conclusions. Results would be compiled and presented in 2019.

Avista will continue to work with WDFW to finalize the study plan for the habitat analysis.

3.0 IMPLEMENTATION ACTIVITIES

3.1 Studies

In accordance with the DO WQAP, Avista focused its initial efforts on analyzing two measures: reducing carp populations and aquatic weed management, which were identified as having high potential for phosphorus reduction.

3.1.1 Carp Population Reduction Program

In order to investigate whether removing carp would improve water quality in Lake Spokane, a Lake Spokane Carp Population Abundance and Distribution Study consisting of a Phase I and Phase II component, was initiated during 2013 and 2014. The purpose of this study was to better understand carp population abundance, distribution, and seasonal habitat use, as well as to help define a carp population reduction program, that may benefit Lake Spokane water quality.

Three contractors were utilized to complete different components of the Phase I and II Analyses, including Golder Associates (Golder), Ned Horner LLC (Avista contract Fishery Biologist), and Tetra Tech. The results of the Phase I and II Analyses were summarized in the Lake Spokane DO WQAP 2014 Annual Summary Report (Avista 2015).

Results of the Phase I and Phase II Analyses indicate that carp removal from Lake Spokane may provide meaningful reductions in TP directly through removal of TP in carp biomass (5g of TP/kg of carp) and indirectly through the reduction of resuspended TP from sediments that carp disturb (bioturbation). The telemetry study, conducted in 2014, defined two time periods when carp were concentrated and vulnerable to harvest; during the winter and during the spring spawning period (May/June). The Phase II Analysis indicated that several different mechanical methods, including but not limited to, spring electrofishing, passive netting, and winter seining would be the most biologically effective and cost efficient means to reduce carp in Lake Spokane. With this, Avista plans to implement a pilot study utilizing a combination of these methods to identify which is the most effective way to remove carp from Lake Spokane.

Based upon the findings of the Phase I and II Analyses, Avista estimates the combination of these efforts could capture from 10,000 to 20,000 carp. The data obtained in 2014 indicated that the average carp weighs 4 kg/fish with about 5 g of TP/kg carp (wet weight), removing 10,000 to 20,000 carp would equate to removing approximately 200 to 400 kg (440 to 882 lbs) of TP from Lake Spokane. Removal of carp would likely also reduce bioturbation and resuspension of TP in sediments.

3.1.2 Aquatic Weed Management

There are approximately 940 acres of aquatic plants present in Lake Spokane, of which 315 acres consist of the non-native yellow floating heart and fragrant water lily (AquaTechnex 2012). In order to evaluate harvesting aquatic plants as a viable method of reducing phosphorus in the lake, Avista contracted Tetra Tech to complete a Phase I Analysis, which: 1) assessed whether harvesting would be a reasonable and feasible

activity to perform in Lake Spokane; 2) refined TP concentrations of relevant weed species in Lake Spokane; and 3) quantified TP load reductions associated with selected control methods.

The results of the Phase I Analysis and Nutrient Reduction Evaluation were summarized in the Lake Spokane Dissolved Oxygen Water Quality Attainment Plan 2013 Annual Summary Report. Based upon the results, Avista concluded that harvesting aquatic plants in Lake Spokane at senescence, would not be effective in reducing TP in Lake Spokane. However, Avista will continue to implement winter drawdowns, herbicide applications at public and community lake access sites, and bottom barrier placement to control invasive/noxious aquatic weeds within the lake. Avista may also, through adaptive management, reassess opportunities to harvest aquatic plants to control phosphorus in the future.

3.2 2016 Implementation Measures

The following section highlights measures which Avista implemented, or assisted in the implementation in order to reduce phosphorus loading and improve DO concentrations in Lake Spokane.

3.2.1 Carp

During 2016, Avista planned to assess the effectiveness of electrofishing and using gill nets during spring spawning when carp are concentrated in shallow areas. This effort was a cooperative project between Avista, WDFW, and the Idaho Cooperative Fishery Research Unit and was to take place over a two-week timeframe. Implementation of the project was initiated on June 13, however the warmer than normal temperatures experienced during the spring of 2016, combined with a lack of significant runoff, triggered carp spawning ahead of what has been historically observed. Additionally, these same weather conditions lead to excessive aquatic weed growth ahead of the normal growth season. As a result of these conditions Avista and its partners were unable to remove carp per our plans.

Avista submitted the status of the project to Ecology via letter correspondence on June 17, 2016. On June 24, 2016, Ecology agreed with Avista's plans to reschedule the carp removal efforts to the winter of 2017 and the 2017 spring spawning period. The status of the carp removal project, along with Ecology's concurrence was submitted to FERC, via letter correspondence, on July 6, 2016.

3.2.2 Wetlands

Avista acquired the 109 acre Sacheen Springs property, located on the west branch of the Little Spokane River. This property contains a highly valuable wetland complex with approximately 59 acres of emergent, scrub-shrub and forested wetlands and approximately 50 acres of adjacent upland forested buffer. Several seeps, springs, perennial and annual creeks are also found on the property. The property was purchased "in fee" and Avista will pursue a conservation easement in order to protect it in perpetuity. Avista completed a detailed site-specific wetland management plan and began implementing it upon Ecology and FERC's approval in 2014. Herbicide application to control terrestrial invasive weeds was completed in 2014, 2015, and 2016 which should help improve the overall biodiversity and function of the wetland property.

Avista and the Coeur d'Alene Tribe have acquired approximately 656 acres on upper Hangman Creek, within the southern portion of the Coeur d'Alene Tribe Reservation in Benewah County, Idaho approximately 10 miles east of the Washington-Idaho Stateline. Site-specific wetland management plans are updated annually for approximately 500acres of these properties and include establishing long-term, self sustaining native emergent, scrub-shrub and/or forested wetlands, riparian habitat and associated uplands, through preservation, restoration and enhancement activities. These properties were all in agricultural use, including straightened creek beds prior to the acquisition. Given Hangman Creek is a significant contributor of sediment and associated phosphorus loading to the Spokane River, Avista anticipates a TP load reduction from the wetland mitigation work. Since 2013, approximately 8,000 native tree and shrub species have been planted on this wetland complex.

As part of the Nine Mile Hydroelectric Development's Rehabilitation Program, Avista partnered with the Washington State Parks and Recreation Commission Parks (State Parks) to complete a wetland and shoreline restoration project on four acres within the Little Spokane Natural Area Preserve. The Natural Area Preserve is a popular location for recreation, however two invasive weed species, yellow flag iris and purple loosestrife, have severely constricted large sections of the river and adjacent shoreline. The mitigation project included herbicide treatments on four acres of yellow flag iris and purple loosestrife invasive weed species during 2014 and 2015. Additionally, in 2014 four trees were removed from the Nine Mile barge landing site and relocated to the Little Spokane River Mitigation Site for large woody debris habitat. After two consecutive years of herbicide applications the stands of invasive weeds have been greatly reduced by an estimated 90%-100%. Also during 2015, Avista partnered with the Washington Department of Natural Resources to implement re-vegetation of the site which included planting 400 trees and shrubs (black cottonwoods, quaking aspens, chock cherry and red

osier dogwood). Individual plants were enclosed with four foot welded wire fencing for protection from browsing and the base was wrapped with a protective sleeve for protection from small mammals. Avista completed additional herbicide spot treatments in 2016.

Additionally, Avista worked with the Stevens County Conservation District (SCCD) to provide a cost share on the installation of a floating treatment wetland in Lake Spokane. The purpose of the floating treatment wetland was for wave attenuation outside a community swim area as well as for potential TP removal. Unfortunately, following the SCCD's award of the grant the Homeowner Association declined to participate in the project. The SCCD and Avista then worked to find a new potential location for the floating treatment wetland in the downstream portion of Lake Spokane adjacent to Avista owned shoreline, as well as to initiate the permitting process for the project.

3.2.3 Native Tree Planting

Avista and the SCCD planted 13,625 ponderosa pines along Lake Spokane's shoreline on Avista-owned property. This project is part of the Long Lake Dam Reservoir and Tailrace Temperature Water Quality Attainment Plan. Once mature, the trees will help reduce water temperature and improve habitat along the lake's shoreline.

3.2.4 Land Protection

Avista has identified approximately 215 acres of land that is currently used for grazing under lease from Washington State Department of Natural Resources (DNR). This land is located within the south half of Section 16 in Township 27 North, Rand 40 E.W. M. in Stevens County. Avista and State Parks are pursuing a lease for the 215 acres of land from DNR with the intent of changing the land use.

In addition, Avista owns over 1,000 acres of land, of which approximately 350 acres are located within 200 feet of the Lake Spokane shoreline in Spokane, Stevens, and Lincoln counties at the downstream end of the reservoir. This includes approximately 14-miles of Avista-owned shoreline that is managed in accordance with Avista's, FERC approved, Spokane River Project Land Use Management Plan (Avista 2016). For the most part this land is contiguous along the north and south shorelines and is managed primarily for conservation purposes. Specific details related to Avista's land use management activities are included in the Land Use Management Plan, a copy of which is available upon request. During 2014 Avista continued to protect this area and will pursue identifying the potential TP load that could be avoided by maintaining a 200-foot buffer along the Avista-owned lake shoreline. Avista will pursue the quantification of this activity along

the wetland/restoration enhancements as the 200-foot buffer should create similar sediment-filtering effects.

3.2.5 Rainbow Trout Stocking

Avista stocked 155,000 triploid rainbow trout (approximately six inches in length) in Lake Spokane during May 2016 as part of a FERC License requirement. As in 2015, Avista continues to hear positive feedback from fisherman indicating the stocked fish were healthy and on average 14 inches long with some as long as 16 inches. Anecdotal information demonstrates the lake is becoming a more popular trout fishery as reported by local residents, news media, and agency staff.

3.2.6 Bulkhead Removal

During 2016, Avista continued to work with the Stevens County Conservation District (SCCD) to plan and permit a design for an additional bulkhead removal project on an Avista-owned shoreline parcel located in TumTum. The project would consist of replacing a 90 foot bulkhead with native rocks and vegetation to provide a more natural shoreline. The final permit required for this project was issued in December 2016. Given the project has to take place with the lake is drawndown, we anticipate this project taking place during winter 2017/2018.

3.2.7 Education

Avista participated with others to support passage of a Washington law¹, effective January 2013, limiting the use of phosphorus (except for certain circumstances) in residential lawn fertilizers, which includes those adjacent to Lake Spokane in Spokane, Stevens, and Lincoln counties. Although the new law legally restricts use of fertilizer containing phosphorus, homeowner education will be important in actually reducing phosphorus loads to the lake.

During 2016, Avista participated in the SCCD's Best Management Implementation Project. This project is funded through an Ecology grant and one component includes educating Lake Spokane high school students about the water quality in the watershed. This includes discussing best management practices around the lake, such as, the benefits of natural shorelines with native vegetation buffers, proper disposal of lawn clippings and pet waste, use of phosphorus-free fertilizers, and regularly maintaining septic systems.

¹ Engrossed Substitute House Bill 1489, Water Quality – Fertilizer Restrictions, Approved by Governor Christine Gregoire April 14, 2011 with the exception of Section 4 which is vetoed. Effective Date January 1, 2013.

In addition, during 2016 Avista managed a booth at the Northern Idaho/Eastern Washington Annual Lakes Conference to provide education materials for lakeshore owners and community members.

Avista actively participates with the Lake Spokane Association and periodically features articles regarding best management practices for shoreline homeowners in its annual Spokane River Newsletter which is distributed electronically to the Lake Spokane shoreline homeowners.

4.0 EFFECTIVENESS OF IMPLEMENTATION ACTIVITIES

Quantification of the implementation activities including wetlands, land protection, and carp removal are in progress as described for each of these activities below.

• Wetlands

Avista is in the initial stages of implementing site-specific wetland management plans for the Sacheen Springs and Hangman Creek properties. As the wetland management plans are implemented Avista will work with Ecology to explore appropriate total phosphorus load reduction quantification tools.

Land Protection

Avista and State Parks are pursuing the 215 acre lease from DNR with the intent of changing the land use. Once this has been completed, Avista will provide a quantification of the estimated TP loading removed from eliminating, or limiting, grazing activities.

In addition, Avista owns over 1,000 acres of land, of which approximately 350 acres are located within 200 feet of Lake Spokane's shoreline in Spokane, Stevens, and Lincoln counties at the downstream end of the reservoir. During 2015 Avista continued to protect this area and will pursue identifying the potential TP load that could be avoided by maintaining a 200-foot buffer along the Avista-owned lake shoreline.

Avista will pursue quantifying TP load reduction for the 200-foot buffer and from the wetland/restoration enhancements, as these two activities should create similar sediment-filtering effects.

5.0 PROPOSED ACTIVITIES FOR 2017

The following activities are proposed for implementation in 2017.

• Carp

Avista plans to assess the effectiveness of using gill nets during the winter of 2017 to remove carp from the vicinity of the Sportsman's Paradise area of Lake Spokane. Additionally, Avista plans to utilize electrofishing and using gill nets during spring spawning when carp are concentrated in shallow areas. Avista may also explore the effectiveness of carp removal through archery. Avista is coordinating these efforts with WDFW and will obtain a scientific collection permit prior to implementing the activities.

An education outreach effort will be completed during the spring spawning carp reduction efforts in order inform shoreline homeowners of the programs main objective, to reduce TP from the lake and improve dissolved oxygen concentrations.

The TP reduction associated with the carp removal efforts will be quantified based upon the results of the Phase I Analysis as well as any new information pertaining to loading estimates for Lake Spokane. Avista will analyze carp for phosphorus in order to either confirm the 5 g of TP/kg identified during the Phase I Analysis, or allow for adjustment based upon the analysis results.

With regard to carp disposal, the carp will be transported to one of Waste Management's municipal landfills in either Wenatchee or Arlington.

Habitat Evaluation

Avista will continue to stock 155,000 triploid rainbow trout (approximately six inches in length) in Lake Spokane on an annual basis. Initial responses to the program indicate it is successful and the stocked trout are doing well. This program will assist Avista, Ecology and WDFW in the ongoing effort to evaluate suitable salmonid habitat in Lake Spokane. Avista and WDFW will evaluate the success of the stocking program after ten years of implementation.

Additionally, as discussed in Section 2.3 (Monitoring Recommendations), Avista plans to initiate a multi-year fish population and habitat assessment for rainbow trout in Lake Spokane in 2017.

• Wetlands

Avista will continue to implement site-specific wetland management plans for the Sacheen Springs and Hangman Creek properties.

Additionally, Avista will continue to work with the SCCD to permit and plan for the placement of a floating treatment wetland in the downstream section of Lake Spokane, adjacent to Avista-owned shoreline. The anticipated timeframe for this project is 2017,

pending permits. The purpose of the floating treatment wetland would be for water quality improvements including reducing surface water temperatures as well as potentially removing nutrients from the water column. Additionally the floating treatment wetland has an educational component allowing for the study to with regard to their impacts on fish, as well as wetland vegetation survival rates.

• Native Tree Planting

Avista will monitor the tree survival for the trees planted to date along the Avista-owned Lake Spokane shorelines.

Land Protection

Avista and State Parks are pursuing the 215 acre lease of land from DNR with the intent of changing the land use. Avista will also continue to protect the 200-foot buffer of Avista-owned shoreline located in the lower portion of the reservoir.

Bulkhead Removal

During the 2017/2018 winter, now that all the permits have been issued, Avista will work with the SCCD to replace approximately 90 feet bulkhead with a more natural shoreline on the Avista-owned shoreline parcel in TumTum. Avista will explore additional bulkhead removal projects on Lake Spokane as it learns of them.

• Education

Avista will continue to participate with Ecology, the Lake Spokane Association, the SCCD, and others to inform shoreline homeowners of best management practices they can implement to help protect the lake.

6.0 SCHEDULE

Avista's implementation schedule incorporates several benchmarks and decision points important in implementing the DO WQAP. As part of the 2015 Annual Summary Report and based on Ecology's recommendation, Avista revised the DO WQAP Implementation Schedule (Figure 3, Revised DO WQAP Implementation Schedule) to better sync with the compliance schedule of the DO TMDL, including point- and non-point source wasteload and load reductions. The revision consists of changing the initial implementation dates that Avista would run the CE-QUAL-W2 model (2016/2017, 2019/2020, and 2021/2022. Avista will continue to work with Ecology during 2017 to continue developing a plan to run the CE-QUAL-W2 model, as further described below.

Benchmarks and important milestones completed to date, and extending into 2019 include the following.

2012

• Prepared the DO WQAP, which identified nine potentially reasonable and feasible measures to improve DO conditions in Lake Spokane. Approval of the DO WQAP was obtained from Ecology on September 27, 2012 and from FERC on December 19, 2012.

2013 (Year 1)

- Conducted the baseline nutrient monitoring in Lake Spokane (May through October).
- Conducted the Aquatic Weed Management Phase I Analysis and Nutrient Reduction Evaluation.
- Initiated the Lake Spokane Carp Population Abundance and Distribution Study.
- Planted 300 trees on Lake Spokane.
- Assisted with a bulkhead removal on the Staggs parcel and began designing the bulkhead removal for the second property on Lake Spokane.
- Protected approximately 14-miles of Avista-owned shoreline from future development.
- Acquired 109-acres of wetland property in the Little Spokane Watershed and 656-acres in the upper Hangman Creek Watershed.
- Continued education activities targeted at Lake Spokane shoreline homeowners.

2014 (Year 2)

- Completed and submitted the 2013 DO WQAP Annual Summary Report to Ecology and FERC.
- Conducted baseline nutrient monitoring in Lake Spokane (May through October).
- Completed the Lake Spokane Carp Population Abundance and Distribution Study.
- Planned and began permitting a bulkhead removal on an Avista Lake Spokane parcel.
- Protected approximately 14-miles of Avista-owned shoreline from future development.
- Implemented site-specific wetland plans on the Sacheen Springs and Hangman Creek properties.
- Stocked 155,000 triploid rainbow trout in Lake Spokane.
- Continued education activities targeted at Lake Spokane shoreline homeowners.

2015 (Year 3)

- Completed and submitted the 2014 DO WQAP Annual Summary Report to Ecology and FERC.
- Conducted baseline nutrient monitoring in Lake Spokane (May through October).
- Worked with WDFW and Ecology in planning a carp reduction effort for 2016.
- Continued planning and permitting the bulkhead removal on an Avista Lake Spokane parcel.
- Protected approximately 14-miles of Avista-owned shoreline from future development.

- Implemented site specific wetland plans on the Sacheen Springs and Hangman Creek properties.
- Stocked 155,000 triploid rainbow trout in Lake Spokane.
- Continued education activities targeted at Lake Spokane shoreline homeowners.

2016 (Year 4)

- Completed and submitted the 2015 DO WQAP Annual Summary Report to Ecology and FERC.
- Conducted the baseline nutrient monitoring in Lake Spokane (May through October). Following monitoring, evaluated the results and success of monitoring baseline nutrient conditions in Lake Spokane and worked with Ecology to define future monitoring goals for the lake.
- Initiated carp removal activities during spring spawning. Activities were rescheduled due to timing of the hydrograph and early aquatic weed growth.
- Obtained all permits for the TumTum bulkhead replacement project.
- Stocked 155,000 triploid rainbow trout in Lake Spokane.
- Continued to implement site specific wetland plans on the Sacheen Springs and Hangman Creek properties.
- Protected approximately 14-miles of Avista-owned shoreline from future development.
- Planted 13,625 trees along Lake Spokane shoreline.

2017 (Year 5)

- Will submit the DO WQAP Five Year Report to Ecology and FERC by February 1 and April 1, respectively.
- Will continue baseline nutrient monitoring in Lake Spokane and initiate a multi-year fish population and habitat assessment to gain a better understanding of core summer salmonid habitat in Lake Spokane.
- Will complete other mitigation measures as proposed in previous years' Annual Summary Report.
- Avista will continue to work with Ecology during 2017 in regard to developing a plan to run the CE-QUAL-W2 model. This may include timing, objectives, data input, and a QA/QC plan for potential future model runs.

2018 (Year 6)

- Will submit the 2017 DO WQAP Annual Summary Report to Ecology and FERC by February 1 and April 1, respectively.
- Avista will continue implementing the multi-year fish population and habitat assessment and will work with Ecology to determine whether or not to continue baseline nutrient monitoring during 2018.

- Will complete other mitigation measures as proposed in previous years' Annual Summary Report.
- Will discuss timing, objectives, and data input of potential future CE-QUAL-W2 model runs with Ecology.

2019 (Year 7)

- Will submit the 2018 DO WQAP Annual Summary Report to Ecology and FERC by February 1 and April 1, respectively.
- May conduct the baseline nutrient monitoring in Lake Spokane (May through October), dependent upon the results of the 2017 (and possible 2018) monitoring program.
- Will complete other mitigation measures as proposed in previous years Annual Summary Report.
- Will discuss timing, objectives, and data input of potential future CE-QUAL-W2 model runs with Ecology.

7.0 REFERENCES

AquaTechnex. 2012. 2012 Lake Spokane Aquatic Plant Survey.

- Avista. 2016. Land Use Management Plan, Article 419, Spokane River Hydroelectric Project, FERC Project No. 2545. March 9.
- Avista. 2015. Lake Spokane Dissolved Oxygen Water Quality Attainment Plan, 2014 Annual Summary Report, Washington 401 Certification, FERC License Appendix B, Section 5.6, Spokane River Hydroelectric Project, FERC Project No. 2545. May19.
- Avista. 2014. Lake Spokane Dissolved Oxygen Water Quality Attainment Plan, 2013 Annual Summary Report, Washington 401 Certification, FERC License Appendix B, Section 5.6, Spokane River Hydroelectric Project, FERC Project No. 2545. March 20.
- Avista and Golder Associates, 2012. Lake Spokane Dissolved Oxygen Water Quality Attainment Plan, Spokane River Hydroelectric Project, FERC Project No. 2545, Washington 401 Certification, Section 5.6. Prepared by Avista and Golder Associates. October 5.
- Ecology (Washington State Department of Ecology). 2009. 401 Certification-Order Spokane River Hydroelectric Project Certification-Order No. 5492 FERC License No. 2545, As amended May 8, 2009 by Order 6702.
- Ecology (Washington State Department of Ecology). 2010a. Spokane River and Lake Spokane Dissolved Oxygen Total Maximum Daily Load Water Quality Improvement Report. Publication No. 07-10-073. Revised February 2010.
- Federal Energy Regulatory Commission (FERC). 2009. Order Issuing New License and Approving Annual Charges For Use Of Reservation Lands. Issued June 18.
- Golder Associates. 2015. Lake Spokane Carp Population Abundance and Distribution Study 2014 Annual Report Phase I. January 29.
- Horner LLC. Phase II Analysis Carp Harvest Potential in Lake Spokane. January 2015.
- Tetra Tech. 2017. Lake Spokane Annual Summary and Five-Year Report, 2016 Baseline Water Quality Monitoring Results and Assessment of Water Quality 2010 2016. January 2017.
- Tetra Tech. 2016. Technical Memorandum, Literature Review of Phosphorus Loading from Carp Excretion and Bioturbation & Phosphorus Loading Estimates for Lake Spokane Carp. January.
- Tetra Tech. 2014. Quality Assurance Project Plan for Lake Spokane Baseline Nutrient Monitoring. January 2014.

Five Year Report

FIGURES

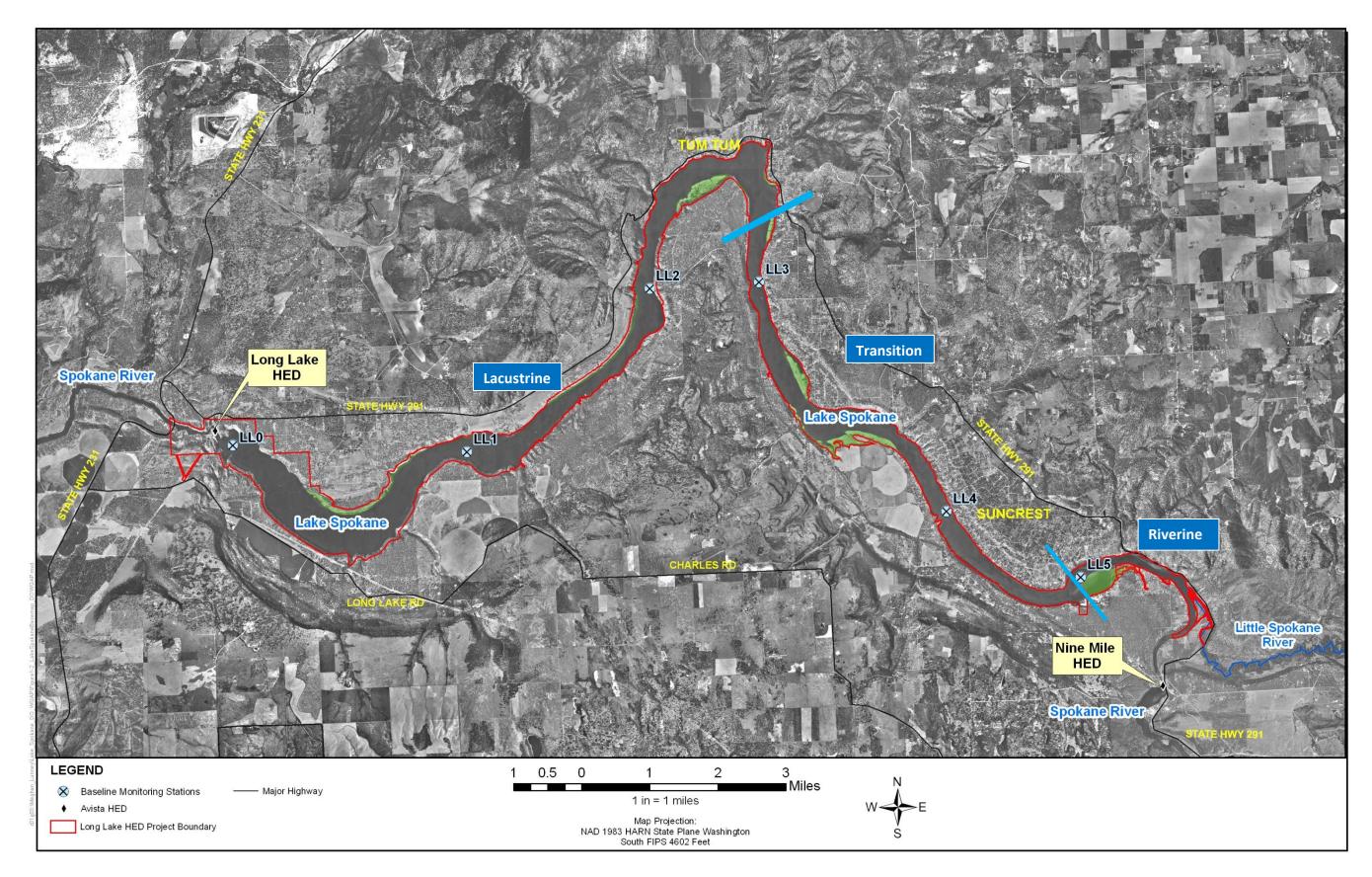


Figure 1. Lake Spokane Baseline Monitoring Stations

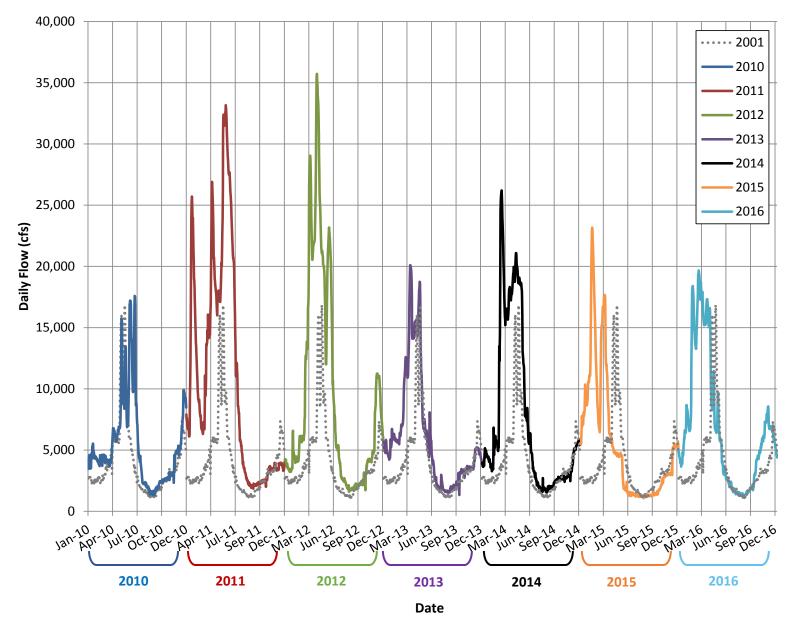


Figure 2. Total Inflows¹ between 2010 and 2016 into Lake Spokane contrasted with 2001 inflows (Source: TetraTech, 2017). ¹ Inflows calculated based on midnight to midnight lake elevation and day average outflow at midnight as recorded at Long Lake Dam.

		Implementation Year ¹										
			Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10
		2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	Activity	Winter Spring Summer Fall										
	Submit DO WQAP to Ecology	х										
DO WQAP	Receive approval from Ecology*	х										
Submittal	Submit DO WQAP to FERC*	х										
	Receive approval from FERC*	х										
Carp	Phase I Analysis: Identify location and population of carp		хх	ххх								
	Summarize Phase I findings ² *			х	х							
	Phase II Analysis: Evaluate harvest technology			хххх								
	Select carp removal method(s)			х								
	Summarize Phase II findings ² , consult and discuss with Ecology				х							
	Determine with Ecology whether carp population reduction is reasonable and feasible to implement in Lake Spokane*				x							
	If determined reasonable and feasible, implement measure; if not, revise implementation strategy, monitoring, and schedule*				x x	x						
	If implemented, monitor for nutrient reductions				хх	x x	x x	хх	хх	хх	x x	
	Phase I Analysis: Evaluate feasibility of mechanical harvesting		x x x									
	Nutrient reduction evaluation		хх									
	Summarize findings ² , consult and discuss with Ecology*			х								
Aquatic Weed Management	Determine with Ecology whether aquatic weed harvesting is reasonable and feasible to implement in Lake Spokane*			x								
	If determined reasonable and feasible, implement measure; if not, revise implementation strategy, monitoring, and schedule*			x x	x x	хх	хх	хх	х х	x x	хх	
	If implemented, monitor for nutrient reductions			хх	хх	x x	x x	хх	х х	хх	x x	
	Implement yearly aquatic weed controls through separate program ³			хх	хх	x x	x x	хх	хх	хх	x x	
Other Measures	Evaluate & implement additional measures, as appropriate						x x x x	x x x x	x x x x	x x x x	x x x x	
	Baseline Monitoring ⁴	x x x	x x x	x x x	x x x	x x x						
Monitoring &	Ongoing Habitat Analysis ⁵			хх								
Modeling	Site Specific Nutrient Reduction Analysis ⁶											
	CE-QUAL Modeling ⁷											
Compliance	DO WQAP Annual Summary Report*			х	х	х		х	х		х	
Reporting	Five, Eight, and Ten-Year Reports*						х			х		х

Notes:

(1) = Implementation Year dependent upon date of FERC approval.

(2) = Findings would be summarized in the DO WQAP Annual Summary/Report, which will be submitted to Ecology for review and approval.

(3) = Annual aquatic weed control activities implemented under the Lake Spokane and Nine Mile Reservoir Aquatic Weed Management Program.

(4) = Avista and Ecology will re-evaluate baseline nutrient monitoring program following the completeing of the 2016 season.

(5) = Ongoing in nature with periodic reporting to Ecology.

(6) = Dependent upon outcome of carp population reduction and aquatic weed management phased analyses.

(7) = Avista will continue to work with Ecology to determine the timing for future CE-QUAL model runs.

<u>Revised</u> Figure 3. DO WQAP Implementation Schedule (Source: Figure 3-3, DO WQAP)

APPENDICES

APPENDIX A

Lake Spokane Annual Summary & Five-Year Assessment, 2016 Baseline Water Quality Monitoring Results And Assessment of Water Quality 2010 – 2016 (Tetra Tech 2017)

LAKE SPOKANE ANNUAL SUMMARY & FIVE-YEAR ASSESSMENT

2016 Baseline Water Quality Monitoring Results And Assessment of Water Quality 2010 – 2016

Prepared for

AVISTA

SPOKANE, WASHINGTON

PREPARED BY:

Tetra Tech, Inc.

316 W. Boone Avenue, Suite 363 Spokane, WA 99201

January 2017

(This Page Intentionally Left Blank)

TABLE OF CONTENTS

1.	IN	NTRODUCTION	1
	1.1.	REPORT PURPOSE	1
2.	Μ	IONITORING PROGRAM	5
3.	20	016 RESULTS	9
	3.1	CLIMATIC AND HYDROLOGIC CONDITIONS	9
	3.2	WATER QUALITY CONDITIONS	19
	3.1	.2.1 Temperature	19
	3.1	.2.2 Conductivity	23
	3.1	.2.3 Dissolved Oxygen	27
	3.1	.2.4 pH	34
	3.1	.2.5 Nutrients	38
	3.1	.2.6 Phytoplankton	
	3.1	.2.7 Transparency (Secchi Disk Depth)	
	3.1	.2.8 Zooplankton	74
	3.1	.2.9 Spokane River at Nine Mile Bridge and Little Spokane River near Mouth	
	3.1	.2.10 Spokane River Downstream of Long Lake Dam	
	3.1	.2.11 DO – Temperature Related Fish Habitat	
	3.3	2016 QUALITY ASSURANCE	91
4.	AS	SSESSMENT OF WATER QUALITY IN LAKE SPOKANE (2010 – 2016)	94
	4.1	TEMPERATURE	94
	4.2	DISSOLVED OXYGEN	96
	4.3	PHOSPHORUS	99
	4.4	NITROGEN	103
	4.5	TROPHIC STATE/PRODUCTION	106
	4.6	DO, TEMPERATURE AND FISH HABITAT	111
5.	RI	EFERENCES	116

List of Appendices

Appendix I	Lake Spokane In Situ Monitoring Data
Appendix II	Lake Spokane Laboratory Monitoring Data

- Appendix III Lake Spokane Phytoplankton Data
- Appendix IV Lake Spokane Zooplankton Data

List of Tables

Table 1. Designated Aquatic Life Uses and DO Criteria for the Spokane River as Defined in the 2006 Water Qu	Jality
Standards	2
Table 2. Lake Spokane Monitoring Schedule during 2016	8
Table 3. Discrete Depth Samples for Stations Monitored in Lake Spokane during 2016 ⁽¹⁾	8
Table 4. Inflows and water residence times in Lake Spokane during 2001 and 2010-2016. Residence times are for	or
June through October	18
Table 5. Daily flows and water residence times in Lake Spokane during 2001 and 2010-2016, using DO TDML	
seasonal timeframes.	18

Table 6. Volume-Weighted hypolimnetic DO concentrations in Lake Spokane, during May-October 2016, using DO concentrations determined from 9 meters and deeper
Table 7. Volume-Weighted Hypolimnetic DO concentrations in Lake Spokane, during May-October 2016, using
DO concentrations determined from 15 meters and deeper
Table 8. Volume-Weighted Water Column TP Concentrations for Monitoring Stations in 2016
Table 9. Average summer (June – September) phytoplankton biovolume and percent cyanobacteria at the six
stations during 2012-2016. Phytoplankton samples collected in 2012 – 2014 were analyzed by Water
Environmental Services, Inc. and samples collected in 2015 and 2016 were analyzed by EcoAnalysts, Inc
Table 10. Summer Mean Density of <i>Cladocera</i> at the Six Stations in 2016 Corrected for Depth of Net Haul to Aerial
Units
Table 11. Summer Mean Density of Cladocera at the Six Stations in 2012 Corrected for Depth of Net Haul to Aerial
Units
Table 12. Summer Mean Density of Cladocera at the Six Stations in 2013 Corrected for Depth of Net Haul to Aerial
Units
Table 13. Summer Mean Density of Cladocera at the Six Stations in 2014 Corrected for Depth of Net Haul to Aerial
Units
Table 14. Summer Mean Density of Cladocera at the Six Stations in 2015 Corrected for Depth of Net Haul to Aerial
Units77
Table 15. Water Quality Data from the Spokane River at Nine Mile Bridge during 2016
Table 16. Conventional Water Quality Data from the Spokane River at Nine Mile Bridge during 201685
Table 17. Water Quality Data from the Little Spokane River near Mouth during 201685
Table 18. Conventional Water Quality data from the Little Spokane River near Mouth during 201686
Table 19. Average annual and June - October Air Temperature at Spokane International Airport94
Table 20. June - October Average Water Temperatures in Lacustrine Zone of Lake Spokane, 2010 - 2016
Table 21. Summer (June – September) mean TP concentrations (µg/L) in the Spokane River compared to summer
mean volume-weighted TP concentrations in Lake Spokane at LL4 and LL5. Volume weighted TPs for 2010
and 2011 at LL4 and LL5 are based on composite samples100
Table 22. Mean Epilimnetic/Euphotic Zone TP Concentrations for Lake Spokane for 2010 - 2016100
Table 23. 2012-2016 Summer (June to September) Epilimnetic Means Compared to 2010 and 2011 Summer
Euphotic Zone Means in Lacustrine, Transition, and Riverine Zones in Lake Spokane. Whole reservoir means
are area weighted; Lacustrine 61%, Transition 29%, and Riverine 11% of the total reservoir area106
Table 24. Trophic State Boundaries (Nurnberg 1996)106
Table 25. Trophic State Indices for Lacustrine, Transition, and Riverine Zones in Lake Spokane, 2016 (Carlson
1974). Shaded indices (≥40) indicate mesotrophy and unshaded oligotrophy107
Table 26. Summer mean epilimnetic TN:TP ratios

List of Figures

7
2
3
4
5
5
y
6
7
0
1
1

Figure 11. Temperature Profiles for Station LL3, May-October 2016	22
Figure 12. Temperature Profiles for Station LL4, May-October 2016	
Figure 13. Temperature Profiles for Station LL5, May-October 2016	
Figure 14. Conductivity Profiles for Station LL0, May-October 2016	
Figure 15. Conductivity Profiles for Station LL1, May-October 2016	
Figure 16. Conductivity Profiles at Station LL2, May-October 2016	
Figure 17. Conductivity Profiles at Station LL3, May-October 2016	
Figure 18. Conductivity Profiles at Station LL4, May-October 2016	
Figure 19. Conductivity Profiles at Station LL5, May-October 2016	
Figure 20. DO Profiles for Station LL0, May-October 2016	
Figure 21. DO Profiles for Station LL1, May-October 2016	
Figure 22. DO Profiles at Station LL2, May-October 2016	
Figure 23. DO Profiles at Station LL3, May October 2016	
Figure 24. DO Profiles at Station LL4, May-October 2016	
Figure 25. DO Profiles at Station LL5, May-October 2016	
Figure 26. Average DO and Conductivity Profiles for Stations LL0, LL1, and LL2 from July 5 th through Se	
19 th , 2016.	
Figure 27. pH Profiles for Station LL0, May-October 2016	
Figure 28. pH Profiles for Station LL1, May-October 2016	
Figure 29. pH Profiles at Station LL2, May-October 2016	
Figure 30. pH Profiles at Station LL2, May October 2016	
Figure 31. pH Profiles at Station LL4, May-October 2016	
Figure 32. pH Profiles at Station LL5, May-October 2016	
Figure 33. TP Concentrations (µg/L) at Station LL0, May-October 2016	
Figure 34. SRP Concentrations (µg/L) at Station LL0, May-October 2010	
Figure 35. TP Concentrations (µg/L) at Station LL0, May-October 2016	
Figure 36. SRP Concentrations (μ g/L) at Station LL1, May-October 2010	
Figure 37. TP Concentrations (µg/L) at Station LL2, May-October 2016	
Figure 38. SRP Concentrations ($\mu g/L$) at Station LL2, May October 2016	
Figure 39. TP Concentrations (µg/L) at Station LL2, May-October 2016	
Figure 40. SRP Concentrations ($\mu g/L$) at Station LL3, May October 2016	
Figure 41. TP Concentrations (µg/L) at Station LL4, May October 2016	
Figure 42. SRP Concentrations (μ g/L) at Station LL4, May-October 2016	
Figure 43. TP Concentrations ($\mu g/L$) at Station LL5, May October 2016	
Figure 44. SRP Concentrations ($\mu g/L$) at Station LL5, May October 2016	
Figure 45. Mean Epilimnion TP Concentrations in the Lacustrine Zone in Lake Spokane, 2010-2016	
Figure 46. Volume-Weighted Water Column TP Concentrations, 2016	
Figure 47. TN Concentrations (μ g/L) at Station LL0, May-October 2016	
Figure 48. NO_3+NO_2 Concentrations ($\mu g/L$) at Station LLO, May-October 2016	
Figure 49. TN Concentrations (μ g/L) at Station LL1, May-October 2016	
Figure 50. NO_3+NO_2 Concentrations ($\mu g/L$) at Station LL1, May October 2016	
Figure 51. TN Concentrations (μ g/L) at Station LL2, May-October 2016	
Figure 52. NO_3+NO_2 Concentrations ($\mu g/L$) at Station LL2, May October 2016	
Figure 52. TN Concentrations (μ g/L) at Station LL2, May October 2016	
Figure 54. NO3+NO2 Concentrations (µg/L) at Station LL3, May October 2016	
Figure 55. TN Concentrations ($\mu g/L$) at Station LL4, May-October 2016	
Figure 56. NO_3+NO_2 Concentrations ($\mu g/L$) at Station LL4, May-October 2016	
Figure 57. TN Concentrations (μ g/L) at Station LL5, May-October 2016	
Figure 58. NO_3+NO_2 Concentrations ($\mu g/L$) at Station LL5, May-October 2016	
Figure 59. Chl Concentrations (μ g/L) at Station LL0, May-October 2016	
Figure 60. Chl Concentrations ($\mu g/L$) at Station LL1, May-October 2016	
Figure 61. Chl Concentrations ($\mu g/L$) at Station LL2, May-October 2016	
Figure 62. Chl Concentrations ($\mu g/L$) at Station LL3, May-October 2016	
Figure 63. Chl Concentrations ($\mu g/L$) at Station LL4, May-October 2016	
Figure 64. Chl Concentrations ($\mu g/L$) at Station LL5, May-October 2016	
There is the concentrations (<i>pp</i> (<i>L</i>) at Station LLS, May October 2010	

	60
Figure 65. Phytoplankton Density (cells/ml) at Station LL0, May-October 2016	
Figure 66. Phytoplankton Volume (mm ³ /L) at Station LL0, May-October 2016 Figure 67. Phytoplankton Density (cells/ml) at Station LL1, May-October 2016	
Figure 68. Phytoplankton Volume (mm ³ /L) at Station LL1, May-October 2016	
Figure 69. Phytoplankton Volume (mm ⁻ /L) at Station LL1, May-October 2016	
Figure 70. Phytoplankton Volume (mm ³ /L) at Station LL2, May-October 2016	
Figure 71. Phytoplankton Volume (mm/L) at Station LL2, May-October 2016	
Figure 72. Phytoplankton Volume (mm ³ /L) at Station LL3, May-October 2016	
Figure 73. Phytoplankton Density (cells/ml) at Station LL4, May-October 2016	
Figure 74. Phytoplankton Volume (mm ³ /L) at Station LL4, May-October 2016	
Figure 75. Phytoplankton Density (cells/ml) at Station LL5, May-October 2016	
Figure 76. Phytoplankton Volume (mm ³ /L) at Station LL5, May-October 2016	
Figure 77. Transition/Riverine Residence Time vs Chl in Lake Spokane, 2010 – 2016.	
Figure 78. Secchi Disk Depths (m) for Station LL0, May-October 2016.	
Figure 79. Secchi Disk Depths (m) to Station LL0, Way-October 2010	
Figure 80. Secchi Disk Depths (m) at Station LL2, May-October 2010	
Figure 81. Secchi Disk Depths (m) at Station LL2, May-October 2010	
Figure 82. Secchi Disk Depths (m) at Station LL3, May-October 2010	
Figure 83. Secchi Disk Depths (m) at Station LL5, May-October 2010	73
Figure 84. Zooplankton Density (#/L) at Station LL0, May-October 2016	78
Figure 85. Zooplankton Biomass (μ g/L) at Station LL0, May-October 2010	
Figure 86. Zooplankton Density (#/L) at Station LL1, May-October 2016	78
Figure 87. Zooplankton Biomass (µg/L) at Station LL1, May-October 2010	
Figure 88. Zooplankton Density (#/L) at Station LL2, May-October 2016	
Figure 89. Zooplankton Biomass (μ g/L) at Station LL2, May-October 2010	
Figure 90. Zooplankton Density (#/L) at Station LL3, May-October 2016	
Figure 91. Zooplankton Biomass (μ g/L) at Station LL3, May October 2010	
Figure 92. Zooplankton Density (#/L) at Station LL4, May-October 2016	01 82
Figure 93. Zooplankton Biomass (µg/L) at Station LL4, May-October 2010	
Figure 94. Zooplankton Density (#/L) at Station LL5, May-October 2016	
Figure 95. Zooplankton Biomass (µg/L) at Station LL5, May-October 2016	
Figure 96. Habitat Conditions at Station LL0 for Rainbow Trout in 2016, Based on Maximum Temperature (18)	°C)
and Minimum DO (6.0 mg/L) for Growth.	
Figure 97. Habitat Conditions at Station LL1 for Rainbow Trout in 2016, Based on Maximum Temperature (18)	
and Minimum DO (6.0 mg/L) for Growth.	
Figure 98. Habitat Conditions at Station LL2 for Rainbow Trout in 2016, Based on Maximum Temperature (18)	°C)
and Minimum DO (6.0 mg/L) for Growth.	
Figure 99. Habitat Conditions at Station LL3 for Rainbow Trout in 2016, Based on Maximum Temperature (18	
and Minimum DO (6.0 mg/L) for Growth.	
Figure 100. Habitat Conditions at Station LL4 for Rainbow Trout in 2016, Based on Maximum Temperature (1)	8°C)
and Minimum DO (6.0 mg/L) for Growth.	
Figure 101. Habitat Conditions at Station LL5 for Rainbow Trout in 2016 Based on Maximum Temperature (18	
and Minimum DO (6.0 mg/L) for Growth.	
Figure 102. Average June - October temperature contours in Lake Spokane, 1972 - 1985 (Patmont 1987)	
Figure 103. Average June – October temperature contours in Lake Spokane, 2010 – 2016.	
Figure 104. June-October Volume-Weighted Mean Inflow TP Concentrations related to Minimum Volume-	
Weighted Hypolimnetic DO Concentrations before and after Advanced Wastewater Treatment.	
Concentrations from 1972 through 1985 from observed loading at Nine Mile Dam (Patmont 1987). Mean	1
inflow TP Concentrations from 2010-2016 were taken as Volume-Weighted Mean TP Concentrations at	
Station LL5, in lieu of loading data from Nine Mile Dam. Equation for the line: $y = 187.1592x^{-1.2523}$, $r^2 = 187.1592x^{-1.2523}$	-
0.84	
Figure 105. Mean hydraulic residence time (June-October) related to minimum v-w hypolimnetic (below 15 m)	DO
before and after advanced TP reduction in 1977. Residence time was calculated using reservoir outflows	
gaged by USGS (1972-1985) and Avista (2010-2016) at Long Lake Dam. Equation for line for all years:	
$38.535x^{-0.769}$, $r^2 = 0.11$. Equation for line for 2010-2016: $y = 13.634x^{-0.234}$, $r^2 = 0.85$	98

Figure 106. Summer (June-September) Mean Epilimnion/Euphotic Zone TP Concentrations, 2010-2016 (Data is
presented from down-reservoir to up-reservoir, left to right.)	101
Figure 107. Lacustrine Zone Mean Hypolimnetic TP Concentrations, 2010-2016	
Figure 108. Summer (June-September) Mean Epilimnion/Euphotic Zone TN Concentrations, 2010-2016	
presented from down-reservoir to up-reservoir, left to right.)	104
Figure 109. Mean (June - October) TN, DIN, and TP in the Spokane River at Riverside State Park	
Figure 110. Average TSI Indices for the Lacustrine Zone in Lake Spokane, 2010 - 2016.	107
Figure 111. Average TSI Indices for the Transition Zone in Lake Spokane, 2010 - 2016.	108
Figure 112. Average TSI Indices for the Riverine Zone in Lake Spokane, 2010 - 2016.	
Figure 113. Transition of Lake Spokane from borderline hypereutrophy to meso-oligotrophy over a period	l of 44
years	110
Figure 114. Habitat Conditions at Station LL0 for Rainbow Trout in 2010 - 2016, Based on Maximum Te	mperature
(18°C) and Minimum DO (6.0 mg/L) for Growth.	112
Figure 115. Habitat Conditions at Station LL1 for Rainbow Trout in 2010 - 2016, Based on Maximum Te	mperature
(18°C) and Minimum DO (6.0 mg/L) for Growth.	112
Figure 116. Habitat Conditions at Station LL2 for Rainbow Trout in 2010 - 2016, Based on Maximum Te	mperature
(18°C) and Minimum DO (6.0 mg/L) for Growth.	113
Figure 117. Habitat Conditions at Station LL3 for Rainbow Trout in 2010 - 2016, Based on Maximum Te	mperature
(18°C) and Minimum DO (6.0 mg/L) for Growth.	113
Figure 118. Habitat Conditions at Station LL4 for Rainbow Trout in 2010 - 2016, Based on Maximum Te	mperature
(18°C) and Minimum DO (6.0 mg/L) for Growth.	114
Figure 119. Habitat Conditions at Station LL5 for Rainbow Trout in 2010 - 2016, Based on Maximum Te	mperature
(18°C) and Minimum DO (6.0 mg/L) for Growth.	114

ACRONYMS AND ABBREVIATIONS

μS/cm AHOD Avista chl DNR DO Ecology EWU HED MDL N N+P ND NO ₃ +NO ₂ P QAPP RM SRP TMDL TN	micro Siemens per centimeter areal hypolimnetic oxygen deficit Avista Utilities chlorophyll a Department of Natural Resources dissolved oxygen Washington Department of Ecology Eastern Washington University Hydroelectric Development Method detection limit nitrogen nitrogen plus phosphorus non-detect Nitrate+nitrite phosphorus Quality Assurance Project Plan river mile soluble reactive phosphorus total maximum daily load
	•
TN:TP TP TSI	total nitrogen to total phosphorus ratio total phosphorus trophic state index

1. INTRODUCTION

Water quality problems in Lake Spokane due to eutrophication have been investigated on several occasions since the 1960s. Studies by the Washington Department of Ecology (Ecology) and Eastern Washington University (EWU) provided much of the background data for a waste allocation analysis by Harper-Owes in the 1980s (Patmont 1987). The EWU studies defined the extent of algal blooms and hypolimnetic anoxia, which led to 85% of total phosphorus (TP) removal from the City of Spokane wastewater treatment plant effluent starting in 1977. Phosphorus removal from wastewater greatly improved water quality in the reservoir. During the 1970s to 1980s, the EWU group, headed by Dr. R.A. Soltero, produced 14 reports documenting water quality problems before and after wastewater phosphorus removal. This work showed the direct links between phosphorus input and algal blooms on the one hand, and the effect of that algal production on reservoir dissolved oxygen (DO) on the other (Soltero et al. 1982).

The degree of water quality improvement that occurred in the past is important to recognize in assessing the reservoir's water quality today. For example, chlorophyll a (chl) decreased from a June-October average of 20.5 micrograms per liter (μ g/L) before phosphorus removal (5 years of data) to 11.1 μ g/L after (7 years of data). That was in response to inflow TP decreasing from a June-October mean of 86 to 25 μ g/L. Minimum, volume-weighted hypolimnetic DO increased from an average of 1.4 mg/L before (5 years of data) to 3.6 mg/L after (7 years of data) (Patmont 1987).

Improvement in water quality continued during the subsequent 15 to 20 years. By 2010 - 2014, average minimum DO increased 80% and chl decreased 40% as inflow TP declined 40% to 15 μ g/L (5-years of data; Welch et al. 2015). These further improvements were probably attained during the 1990s, although there are no reservoir data between 1985 and 2010 to determine an actual rate of recovery. The magnitude of this long-term improvement will be compared with current water quality conditions determined in 2016, as well as during the seven-year period 2010 – 2016.

This report describes the monitoring effort by Tetra Tech in 2016, under contract to Avista Corporation (Avista), that included *in situ* profiles of temperature, DO, pH, and conductivity, as well as discrete sampling with depth for nutrients, chl, phytoplankton and net zooplankton. Lake Spokane water quality in 2016 will be assessed along with data from 2010 – 2015, including year-over-year variability and trends.

1.1. Report Purpose

Avista owns and operates the Long Lake Hydroelectric Development (HED) on the Spokane River. Long Lake Dam created a reservoir, Lake Spokane, in a 23-mile (37 kilometer) stretch of the Spokane River that was, at one time, free flowing. Portions of the river, including Lake Spokane, experience seasonal patterns in DO concentrations, some of which do not meet Washington State's water quality standards.

Table 1 lists the state water quality criteria for DO that apply to the Spokane River and Lake Spokane. In addition, the Spokane River has the following specific water quality criteria, per WAC 173-201A-130, from Long Lake Dam (RM 33.9) to Nine Mile Bridge (RM 58.0), which encompasses all of Lake Spokane:

The average euphotic zone concentration of total phosphorus (TP) shall not exceed 25 μ g/L during the period of June 1 to October 31.

Table 1. Designated Aquatic Life Uses and DO Criteria for the Spokane River as Defined in th	e 2006
Water Quality Standards.	

Portion of the Waterbody	Aquatic Life Uses	DO Criteria
Spokane River	Migration/Rearing/Spawning	DO shall exceed 8.0 mg/L.
(from Nine Mile		If "natural conditions" ¹ are less than the
Bridge to the Idaho		criteria, the natural conditions ¹ shall
Border)		constitute the water quality criteria.
Lake Spokane	Core Summer Habitat	No measurable (0.2 mg/L) decrease
(from Long Lake		from natural conditions ¹ .
Dam to Nine Mile		
Bridge)		

¹Washington water quality standards (WAC 173-201A-020) defines "natural conditions" or "natural background levels" as "surface water quality that was present before any human-caused pollution. When estimating natural conditions in the headwaters of a disturbed watershed, it may be necessary to use the less disturbed conditions of a neighboring or similar watershed as a reference condition."

Ecology has been working, along with several stakeholders, to address these water quality impairments through the development and implementation of a water quality improvement plan, or Spokane River and Lake Spokane Dissolved Oxygen Total Maximum Daily Load (DO TMDL) (Ecology 2010).

The DO TMDL relies on the CE-QUAL-W2 hydrodynamic and water quality model (CE-QUAL-W2 model) to assess the capacity of the Spokane River and Lake Spokane to assimilate oxygendemanding pollutants (i.e., phosphorus, carbonaceous biological oxygen demand, and ammonia) under varying conditions (DO TMDL, page vi). Unlike point- and non-point source discharges, Avista does not discharge nutrients to either the Spokane River or Lake Spokane. Thus, it was not assigned a wasteload allocation or a load allocation. However, since the presence of the Long Lake HED increases the residence time (average amount of time it takes water to flow through Lake Spokane) the DO TMDL process assigned Avista a "proportional level of responsibility" for depressed DO levels in Lake Spokane through a water quality modeling scenario. This responsibility is reflected in Table 7 of the DO TMDL, which was subsequently corrected (Ecology 2010; Appendix B). Table 7 in the TMDL is based on a comparison of CE-QUAL-W2 model runs for the 2001 model year.

Ecology and Avista jointly conducted a 2-year baseline sampling effort that began in May 2010 and extended through October 2011 at six lake stations and two river stations. The main purpose was to gather more recent data to verify the baseline water quality conditions in 2001, which were used in the TMDL development process, and to account for any changes in water quality in the

reservoir. Ecology and Avista collaborated on a monthly sampling routine extending from June through September in 2010 and 2011 in order to expand the frequency of observations at the six lake monitoring stations. To do that, Avista contracted with Tetra Tech.

Beginning in 2012, Avista took over monitoring of the six lake stations in Lake Spokane and continued that effort through 2016. Ecology would continue to provide water quality data for the three river stations (54A090, 55B070, and 54A070). Following the 2016 monitoring season, Avista, with Tetra Tech's assistance would assess the results and success of the baseline nutrient monitoring and DO conditions in Lake Spokane and, following that assessment will work with Ecology to define future monitoring goals for the reservoir. This may include determining whether the parameters monitored, locations, duration, and frequency should be modified.

(This Page Intentionally Left Blank)

2. MONITORING PROGRAM

Water samples were collected and *in situ* profiles were determined once per month in May and October and twice per month from June through September 2016 at the six in-lake locations (LL0, LL1, LL2, LL3, LL4, and LL5) (Figure 1). Station LL0 is located farthest downstream in the reservoir with a depth of 48-50 meter (m). Station LL1 is located across from the Lake Spokane Campground and Boat Launch at a depth of about 34 m. Station LL2 is down-reservoir from the City of TumTum and Sunset Bay at a depth of about 26 m. Station LL3 is just up-reservoir from Willow Bay at a depth of about 19-20 m. Station LL4 is across from Suncrest Park and boat launch at about 9 m depth. Station LL5 is the farthest up-reservoir, slightly up-reservoir from the Nine Mile Recreation Area on the north side of the river at about 6 m depth.

Longitudinally, the reservoir can be divided into three zones representing varying morphometric characteristics. The upper portion of the reservoir is considered to be the riverine zone where depths are shallow and the reservoir has morphological characteristics similar to a large river. Station LL5 is within this riverine zone. Stations LL4 and LL3 are located within the transition zone of the reservoir, where the reservoir is changing from a riverine environment to a more lacustrine environment and most of incoming particulate matter is deposited. Within the transition zone, depths are greater than in the riverine zone but the littoral areas are still similar to those in the riverine zone. Stations LL0, LL1, and LL2 are located in the lacustrine zone, or lake-like portion of the reservoir, where there is both littoral and pelagic (shallow and deep water) environments. Water depths in the lacustrine zone are much deeper than the reservoir and that zone stratifies into three thermal/density layers; the epilimnion, metalimnion, and hypolimnion, during summer.

The vertical structure of Lake Spokane is set up by thermal (or density) stratification, largely determined by its water inflow rates and temperature and often dissolved solids concentration (specific conductance), change in storage, climate, and location of the powerhouse intake. Within Lake Spokane's lacustrine zone, thermal stratification creates three density layers (the epilimnion, metalimnion, and hypolimnion) that are generally present between late spring and early fall. The epilimnion is the uppermost layer, and the warmest due to solar radiation. The metalimnion is the transition layer between the epilimnion and the hypolimnion and includes the thermocline. The surface inflow tends to plunge in this zone forming the interflow zone. The hypolimnion is the transition zone may enter the metalimnion and/or hypolimnion, depending on the flow rate and temperature/conductivity (density) of the inflow.

The 2016 sampling schedule is summarized in Table 2. Discrete samples at consistent depths were collected at each designated location (Table 3) and were shipped to IEH Analytical Laboratories (formerly known as Aquatic Research Inc.) for analyses. In 2013, an additional sample depth at Station LL4 was added at 4 m. This additional depth was also sampled in 2016. Water samples were analyzed for dissolved nitrate plus nitrite (DIN), total persulfate nitrogen (TN), soluble reactive phosphorus (SRP), total phosphorus (TP), and chl. Samples were collected in accordance

with methods and procedures outlined in Avista's *Quality Assurance Project Plan for Lake Spokane Baseline Nutrient Monitoring* (QAPP), which was approved by Ecology and submitted to FERC in February 2014. This QAPP is a revised version of an earlier QAPP written by Ecology for the 2010 and 2011 monitoring efforts and amended in 2012.

Water temperature, DO, pH, and conductivity were determined *in situ* at each of the six sampling locations by lowering a Hydrolab® multi-parameter sonde from the boat. The *in situ* measurements were determined at prescribed depths through the water column. The measurements were determined in accordance with the methods and procedures outlined in the QAPP (Tetra Tech 2014). The Hydrolab® sonde was calibrated according to manufacturer's directions and standard measurement procedures were followed.

Volume-weighted DO and TP concentrations for each station were determined for sampling dates using CE-QUAL-W2 model segment volumes, which corresponded to 2016 monitoring stations. Volumes for model segments were obtained from Avista and Golder Associates. The monitoring stations correspond to model segments as follows:

- Station LL0: Model Segment 188, Reservoir Zone: Lacustrine
- Station LL1: Model Segment 181, Reservoir Zone: Lacustrine
- Station LL2: Model Segment 175, Reservoir Zone: Lacustrine
- Station LL3: Model Segment 168, Reservoir Zone: Transition
- Station LL4: Model Segment 161, Reservoir Zone: Transition
- Station LL5: Model Segment 157, Reservoir Zone: Riverine

Water samples for phytoplankton were collected at 0.5 m depth at each of the six sampling locations. These samples provided information on phytoplankton abundance seasonally and also longitudinally at several locations throughout the reservoir. Zooplankton were collected with a vertical haul at each of the six sampling locations from 1 m off the bottom through the water column. Both phytoplankton and zooplankton samples were sent to EcoAnalysts, Inc. in Moscow, ID for analysis. Previous (prior to 2015) phytoplankton and zooplankton analyses were performed by WATER Environmental Services, Inc.

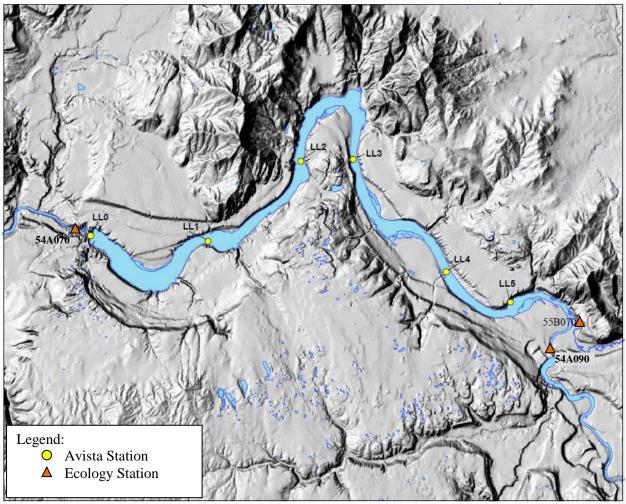


Figure 1. Lake Spokane Sampling Locations

Sample Date	Type of Samples Collected
May 17 – 18, 2016	
June 6 – 7, 2016	
June 21 – 22, 2016	
July 5 – 6, 2016	
July 19 – 20, 2016	Discrete Depth, In situ, Phytoplankton, and
August 10 – 11, 2016	Zooplankton
August 24 – 25, 2016	
September 6 – 7, 2016	
September 19 – 20, 2016	
October 12 – 13, 2016	

Table 2. Lake Spokane Monitoring Schedule during 2016

Table 3. Discrete Depth Samples for Stations Monitored in Lake Spokane during $2016^{(1)}$

	LLO	LL1	LL2	LL3	LL4	LL5
Depths	0.5	0.5	0.5	0.5	0.5	0.5
	5	5	5	5	4	B-1
	15	20	15	10	B-1	
(m)	30	B-1	B-1	B-1		
	B-1					

(1) B-1 is 1 m off the bottom.

3. 2016 RESULTS

This section summarizes water quality constituents determined *in situ*, as well as nutrient, chl, phytoplankton, and zooplankton data from water samples collected at discrete depths. The *in situ* data are presented in Appendix I. All data from water samples collected in 2016 are presented in Appendix II. Phytoplankton results are presented in Appendix III, and zooplankton results in Appendix IV.

This section also briefly summarizes the water quality conditions of the primary inflows and outflows to/from Lake Spokane as well as a description of general hydrologic and climatic conditions in 2016.

3.1 Climatic and Hydrologic Conditions

Weather during 2016 differed greatly from the 30-year norm reported at Spokane International Airport, with lower than normal air temperatures at the very beginning of the year, the middle of June, and then in September, and higher than normal temperatures in February through June, August, as well as in November. December temperatures started out colder than normal before returning to more normal temperatures in the middle and end of the month. Precipitation was above normal during most of late winter and spring and was well below normal from June through September. Temperatures ranged from a high of 97°F (36.1°C) on July 29 to a low of -7°F (-21.7°C) on December 16 (Figure 2). The annual cumulative rainfall total was 18.30 inches (46.5 cm), which was above the normal (Figure 2).

The year began with slightly less than normal precipitation in early January which was followed by wetter than normal conditions in late January and February. Precipitation in March was above normal by 1.69 inches (4.3 cm) with a total of 3.30 inches (8.4 cm). This contrasts with early spring dry conditions in 2013 when March rainfall was only 0.82 inches (2.1 cm). March precipitation was slightly higher than in 2014 and 2015 with 2.88 and 2.43 inches (7.3 and 6.2 cm), respectively. Precipitation was below normal in May with only 0.78 inches (2.0 cm), which was slightly less than half the normal of 1.62 inches (4.1 cm) for that month.

Drought conditions, with below normal precipitation, started in June with only 0.51 inches (1.3 cm) of precipitation, which was 0.74 inches (1.9 cm) below normal. That contrasts with June 2014 which had above normal precipitation with a maximum one-day total of 1.01 inches (2.6 cm) on June 17. June 2016 precipitation also contrasts with the extremely dry June in 2015 when only 0.07 inches (0.2 cm) fell. That was also the warmest June on record with an average temperature of 71.4° F (21.9°C). The Spokane International Airport recorded a high temperature of 105° F (40.6°C) on June 28, 2015.

Drought conditions continued through July and August, 2016. August was also the hottest month of the year with an average temperature of 71.2°F (21.8°C). September brought close to normal temperatures but drought conditions prevailed with only 0.21 inches (0.5 cm) of precipitation, almost 0.5 inch below normal. October 2016 was slightly warmer than normal with an average temperature of 48.4°F (9.1°C). October 2015 was even warmer with an average temperature of

 $54.3^{\circ}F(12.4^{\circ}C)$ which is $6.7^{\circ}F(3.7^{\circ}C)$ above the normal average of $47.6^{\circ}F(8.7^{\circ}C)$ and the second warmest October on record. Temperatures at the airport in 2016 reached the freezing mark on two days in October, on the 11^{th} and 12^{th} . October 2016 was the wettest month on record at the Spokane International Airport with a record 6.23 inches (15.8 cm), breaking the old record of 5.85 inches (14.9 cm) set in November 1897. Two daily rainfall records were also set in October 2016, 0.94 inches (2.4 cm) on October 16^{th} and 0.91 inches (2.3 cm) on October 30^{th} .

October was warmer in 2015, temperatures did not reach the freezing mark for the entire month, similar to conditions in 2014 and the first time since 2005. November started and ended with warmer temperatures than normal but had a brief period of normal temperatures in the middle of the month. November mean temperature was $7.8^{\circ}F$ ($4.3^{\circ}C$) above the normal of $35.7^{\circ}F$ ($2.1^{\circ}C$). On November 16 temperatures finally dropped below the freezing mark for the first time in 2016. Minimum temperatures once again reached the freezing mark on November 27 following the warm spell in the middle of the month. Precipitation in November was below normal with 1.57 inches (4.0 cm) which is 0.73 inches (1.9 cm) below normal. December was slightly colder than normal with an average monthly temperature of $23.1^{\circ}F$ ($-4.9^{\circ}C$) despite more normal temperatures during the middle and end of the month (Figure 2). December was also drier than normal with a precipitation total of 1.49 inches (3.78 cm), 0.81 inches (2.1 cm) below normal, and a total snow accumulation of 19 inches (48.3 cm).

Figures 3 and 4 show inflows and outflows, respectively, during 2016. Inflows include all incoming water as calculated by Avista using midnight to midnight reservoir elevation and daily average outflow at midnight as recorded at Long Lake Dam. As expected, the inflows and outflows for Lake Spokane are very similar. Usually there are slight differences between inflow and outflow that occur during the early part of the year during the annual drawdown. That occurred for a short period of time in early January. Maximum inflows typically occur during March, April, and May due to spring runoff. Inflows in 2001, which was the 7Q10 for the DO TMDL, are shown in Figure 5 for comparison. Peak flows in 2016 were significantly smaller than those observed in 2011 and 2012, slightly smaller than in 2014 and 2015, and similar in magnitude to those in 2013 (Figure 5). Peak flow in 2016, however, occurred in March with an earlier peak at the middle of February, approximately two months earlier than normal. This is similar to flows in 2015 and evident in a comparison of peak flows in 2016 with those in 2001 (Figure 5).

Both the Spokane River and the Little Spokane River had average to higher than average flows during January, February, March, and early April, 2016 (Figures 6 and 7). The peak flow in the Spokane River occurred much earlier, (late February to mid-March vs late May) in the year than historically recorded (Figure 6). Flows in the Spokane River in 2016 were much lower than average during the period of the historical peak, with an average monthly flow of 7,667 cfs (Figure 6). This is slightly higher than the 2015 average May flow of 4,134 cfs. Flows in the Spokane River from the middle of April through September were well below the historical median (Figure 6). Flows in the Little Spokane River were also below the historical median from April through the summer (Figure 7).

Water residence time can markedly affect reservoir quality. Long residence times tend to allow for more settling of particulate matter, including phosphorus in algae, and usually greater

transparency. If residence times are relatively short, on the order of 10 days or less, algal biomass accumulation may be limited. Both effects can occur in reservoirs, which usually have shorter residence times than natural lakes.

Whole reservoir water residence time during 2016 (June through October) was higher than previous years at 43.3 days, except 2015 (Table 4). That was much longer than average, whole reservoir water residence time of 25 days during June through October 2010 through 2014. Including data for 2015 and 2016, average whole reservoir residence time was 34.2 days for the past seven years (2010 through 2016). Residence times in the transition and riverine zones averaged 4.7 days in 2010 – 2014, but were much higher in 2015 at 13.2 days and in 2016 at 8.1 days (Table 4). Bloom development would be limited, on average, in these zones during normal years, especially in the spring, but more able to develop during low flow in August – September of most years. Bloom development was most likely not limited by residence times during 2010-2016, were separated into the seasonal timeframes consistent with the DO TMDL (Table 5). The whole reservoir residence time was 66.8 days in 2016 during the DO TMDL seasonal timeframe of July through September which was less than in 2015 (84.8 days) but higher than 2010 – 2014.

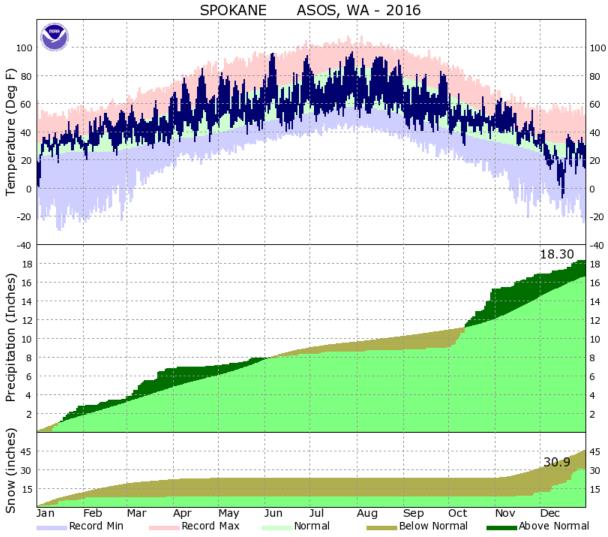


Figure 2. Air Temperature and Precipitation at Spokane International Airport for 2016

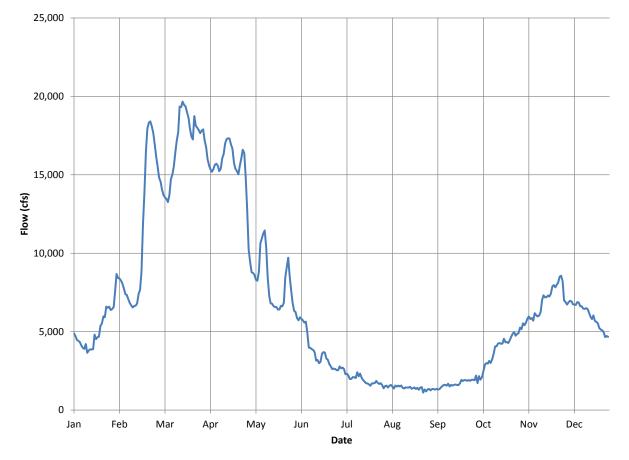


Figure 3. Total Inflow into Lake Spokane, 2016 (Inflows calculated based on midnight to midnight reservoir elevation and day average outflow at midnight as recorded at Long Lake Dam)

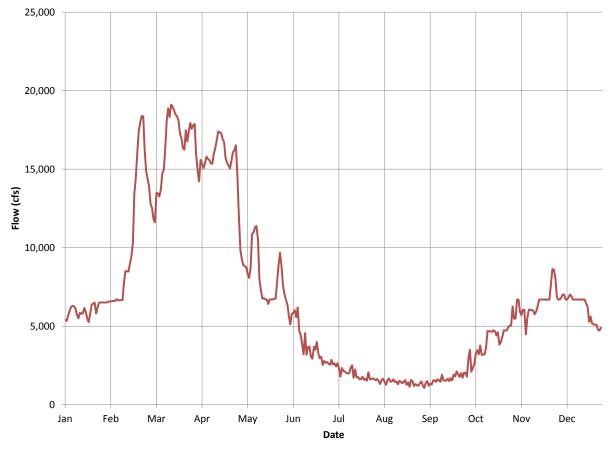


Figure 4. Total Outflow from Lake Spokane, 2016 (Outflows as reported at Long Lake Dam at midnight daily)

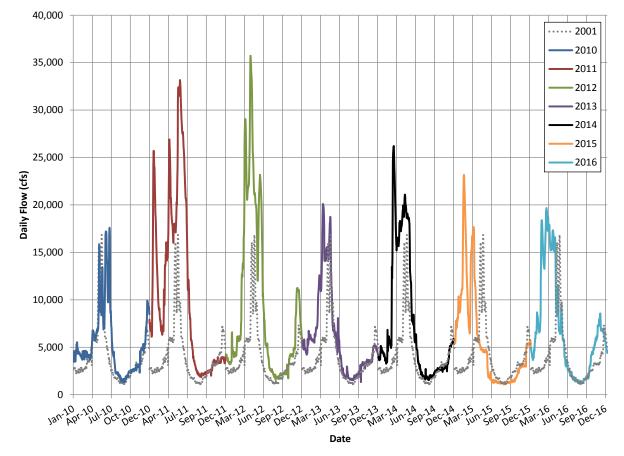


Figure 5. Total Inflows into Lake Spokane 2010-2016 (Inflows calculated based on midnight to midnight reservoir elevation and day average outflow at midnight as recorded at Long Lake Dam)

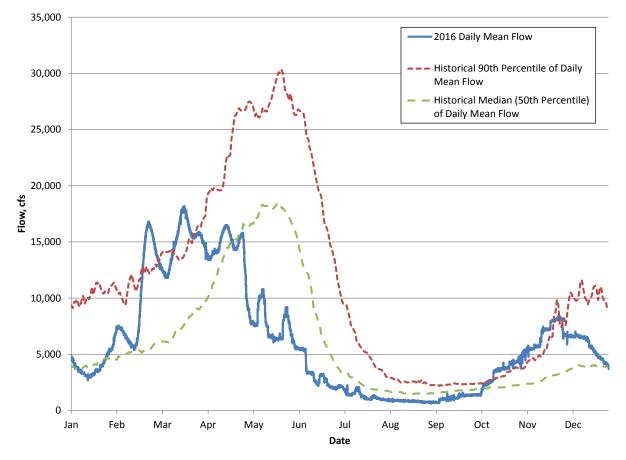


Figure 6. Spokane River at Spokane (USGS Gage # 12422500) Daily mean flow, 2016 compared to Historical Daily Mean Flow

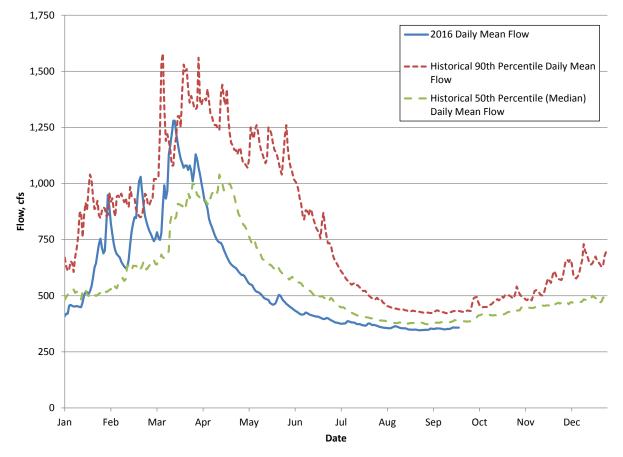


Figure 7. Little Spokane River near Dartford (USGS Gage # 12431500) Daily mean flow, 2016 compared to Historical Daily Mean Flow (Data is through September 22nd, 2016)

Year	Total Annual Flow Volume (cf x10 ⁶)	Annual Mean Daily Flow (cfs)	Mean Daily Summer (June- October) Flow (cfs)	Residence Time ¹ Whole Reservoir (days)	Residence Time ¹ Transition/Riverine Zones (days)
2001	125,782	3,989	2,413	46.3	8.7
2010	167,113	5,299	4,671	23.9	4.5
2011	337,576	10,704	7,828	14.4	2.7
2012	293,971	9,296	5,768	19.4	3.6
2013	189,846	6,020	3,035	36.8	6.9
2014	234,999	7,452	3,581	31.3	5.9
2015	171,137	5,427	1,595	70.1	13.2
2016	216,855	6,858	2,523	43.3	8.1

Table 4. Inflows and water residence times in Lake Spokane during 2001 and 2010-2016. Residence times are for June through October.

¹residence time = reservoir volume/outflow

Table 5. Daily flows and water residence times in Lake Spokane during 2001 and 2010-2016, using
DO TDML seasonal timeframes.

Year	Mean Daily Summer Flow (cfs)						Time ¹ Wl pir (days)		Residence Time ¹ Transition/Riverine Zones (days)				
	Мау	June	July – Sept.	Oct.	May	June	July – Sept.	Oct.	May	June	July– Sept.	Oct.	
2001	11,872	4,560	1,637	2,635	10.1	24.5	68.6	42.1	1.9	4.6	12.9	7.9	
2010	10,036	13,297	2,550	2,620	11.2	8.4	43.8	42.7	2.1	1.6	8.2	8.0	
2011	25,596	24,323	4,232	2,538	4.3	4.6	26.5	44.1	0.8	0.9	5.0	8.3	
2012	23,667	17,333	3,092	2,520	4.8	6.5	36.1	44.4	0.9	1.2	6.8	8.3	
2013	9,037	5,956	2,133	2,884	8.5	18.7	52.5	38.8	1.6	3.5	9.8	7.3	
2014	19,127	8,243	2,373	2,657	5.9	13.6	47.2	41.9	1.1	2.6	8.9	7.9	
2015	4,724	2,360	1,317	1,678	23.8	47.5	84.8	66.6	4.5	8.9	15.9	12.5	
2016	8,101	3,865	1,677	3,735	13.8	28.8	66.8	27.7	2.6	5.4	12.5	5.2	

¹residence time = reservoir volume/outflow

3.2 Water Quality Conditions

3.2.1 TEMPERATURE

The maximum temperature at the surface in 2016 reached almost 23°C in the upper reservoir in early August and just over 23°C in the lacustrine zone during early June (Figures 8 through 13). These maximum temperatures are slightly lower than those observed in 2015 (26°C and 25°C in early July). In 2014, surface maximum temperatures also occurred in August but were similar to maximums observed in 2015 (25°C). Early June surface water temperatures were similar to those observed in August at all stations except LL4 and LL5. The warmer surface water observed in early June corresponded to much warmer than normal air temperatures and cooled by late June when more normal weather conditions returned. Temperatures were below 20°C at depths greater than 10 m in the lacustrine zone during 2016, as was the case in 2013, 2014, and 2015.

Thermal stratification was evident the first sampling event in May at stations LL0, LL1, LL2, and LL3. Surface temperatures were slightly higher (+0.3°C) than the rest of the water column at LL4 in May, however, stratification had not developed. This is similar to conditions in 2015, however, surface temperatures were slightly higher than the rest of the water column at both LL4 and LL5. Temperatures near the bottom in the lacustrine zone were much warmer than in 2015 (9.5 vs. 11.9-13.8°C). Lacustrine temperatures at the surface in May averaged about 2°C higher in 2016 than in 2015, due to an unseasonably warm spring. Lacustrine surface temperatures in May 2015 averaged about 2°C higher than in 2014.

Stratification had developed at all stations, except LL5, by the first sampling event in June, although stratification was weak at LL4. The water column at LL4 remained stratified until October. Stratification at station LL5 was present from the second sampling event in July through the beginning of September, which contrasted with conditions in 2015, when stratification was present from the first sampling event in June through the beginning of September, which was unusually long. In 2014, the water column at LL5 was stratified only during the month of August and in 2013 stratification was sporadic and brief (end of July, end of August, and beginning of September). The unusually high air temperatures in 2015 (mean summer temperature of 69.3°F (20.7°C) and mean summer maximum temperature of 82.1°F (27.8°C)) had a marked effect on water column temperature and density stratification.

Depth of mixing, which defines the epilimnion, was around 5 to 7 m at the three most downreservoir stations during most of the summer, but deepened to around 10 m in September. Gradual deepening of the mixing depth toward summer end is due to surface water cooling and increased density that reduced energy needed to mix the water column by wind. A similar pattern of shallow mixing occurred at station LL3. Mixing depths at LL4 were more consistent over the summer at 3 to 4 m, but did not deepen in September when surface water cooled. Mixing depths at LL5, when stratified, were very shallow at 1 to 2 m with complete mixing occurring during mid to late September.

The extent of the metalimnion and depth of the hypolimnion varied throughout the summer, which is typical in reservoirs that are strongly affected by river inflow and plunging interflows. The

metalimnion is the layer with greatest temperature change with depth – typically over 5 to 10 meters in Lake Spokane. Depth of the hypolimnion can be taken from roughly the inflection point, where rate of temperature change with depth begins to slow - about 10 m during the summer months - to the bottom (Figures 8 through 10). For most dates the hypolimnion depth began at about 10 m to 15 m, becoming shallower in June and deepening later in the summer as the thermocline eroded. That variation is due to the river inflow plunging to different depths consistent with inflow density (temperature and conductivity). Conductivity profiles show the pattern of plunging inflows, which cause much of the temperature variation in the reservoir.

The water column at all stations, except LL4 and LL5, during the October sampling event were still stratified. The deepening of the epilimnion at these stations in October indicates that the turnover process had begun. This pattern was similar to that observed in 2015, although the period of stratification was longer in 2015.

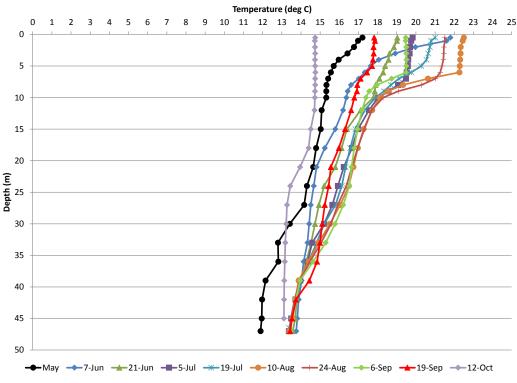
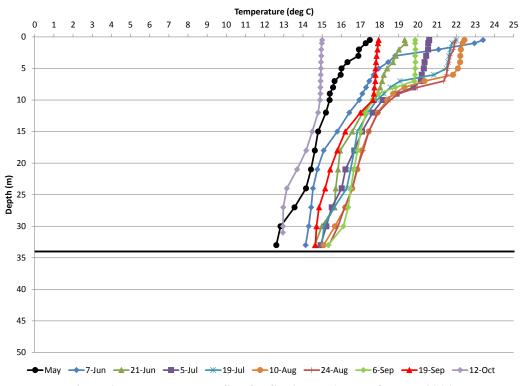
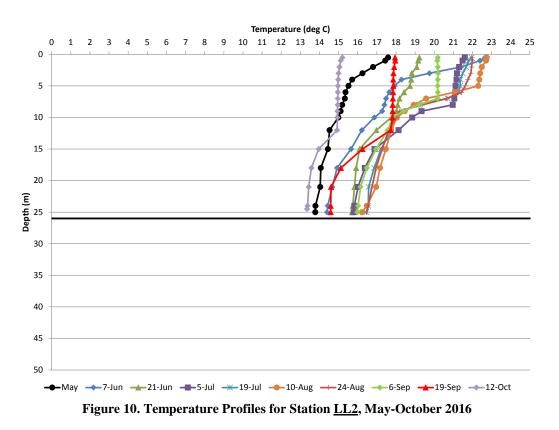
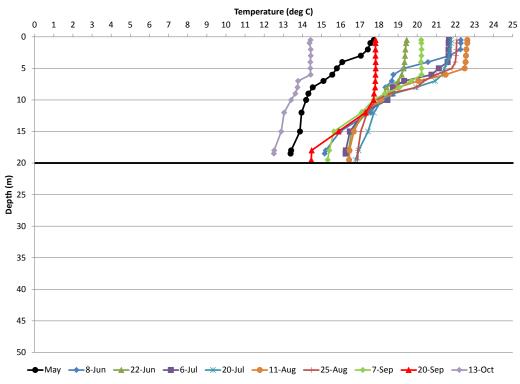
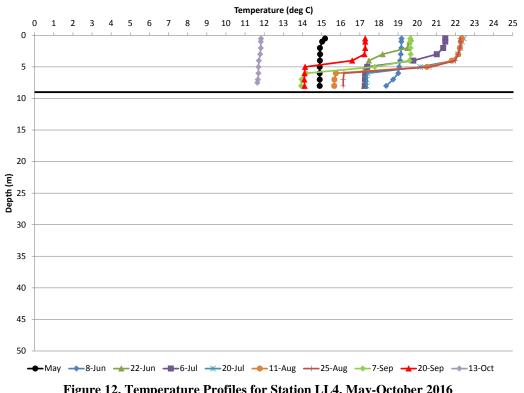
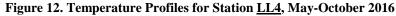


Figure 8. Temperature Profiles for Station <u>LL0</u>, May-October 2016


Figure 9. Temperature Profiles for Station LL1, May-October 2016



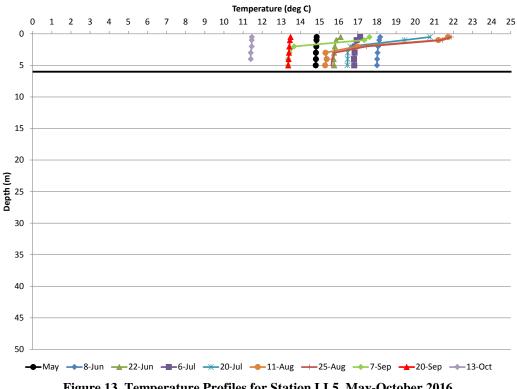


Figure 13. Temperature Profiles for Station LL5, May-October 2016

3.2.2 CONDUCTIVITY

Conductivity ranged from about 87 to 297 micro Siemens/cm (µS/cm) throughout the reservoir (Figures 14 to 19). Conductivity is a conservative constituent, because it largely represents the major ions (Ca, Mg, etc.) that are usually not influenced by gains and losses due to physical (sedimentation) or biological processes. It also represents the contribution of dissolved solids to density.

Conductivity throughout the reservoir in 2016 was similar to 2015 levels which ranged from 106 to 290 μ S/cm. Conductivity was lower in 2014, ranging from 69 to 270 μ S/cm. The difference was due to a concentration effect from lower river flows in 2015 and 2016. During May and early June, 2016, when river flows were relatively high, conductivity was low at all sites due to dilution with low conductivity inflow. Also, in May and early June, 2016, conductivity was somewhat uniform throughout the water column at the deeper stations. As river flow continued to decrease, inflow conductivity at LL5 increased to 256 µS/cm on July 20 and peaked at 297 µS/cm on September 24 (Figure 19).

The interflow zone was easily definable with high conductivity that increased from around 150 µS/cm in June and reached a maximum of 287 µS/cm in September. The interflow zone extended from about 7 to 18 m at stations LL3 to LL0 in June and expanded to 39 m at LL0 in September as the denser, higher conductivity water plunged and moved through the reservoir at those depth

intervals. The high conductivity/density water (270-290 μ S/cm) in August and early September moved along the reservoir bottom from LL5 to LL2, where depths were greater than or equal to 25 meters and entered the deeper reservoir portion between 10 and 25 m. Below 30 m, conductivity was usually less than 150 μ S/cm. Conductivity in bottom waters at LL0 below 39 m had increased only slightly (112 to 123 μ S/cm) from June through September. This pattern resulted in much of the metalimnion in the lower reservoir being composed of river inflow. River inflows in 2016 were high enough in October to mix higher conductivity water to the deepest portions of the reservoir, as was the case in the past years of monitoring, with the exception of 2015. In 2015, river inflows were still too low in September and October to mix the higher conductivity water to the deepest portions of the reservoir.

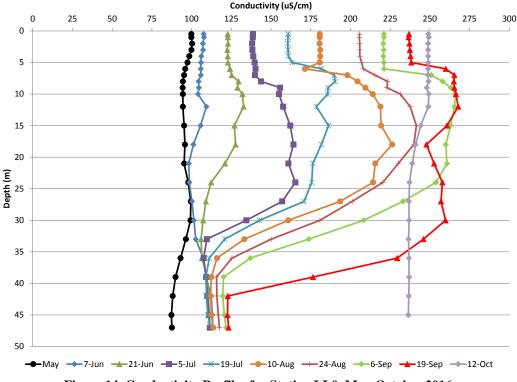
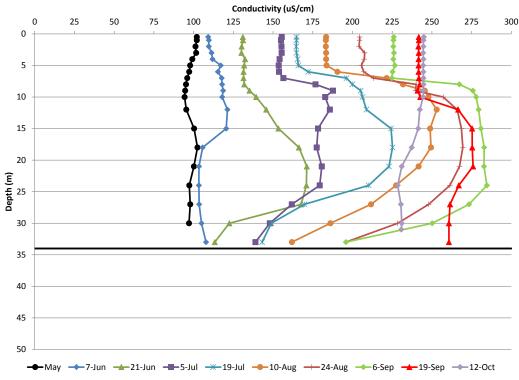
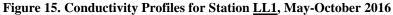
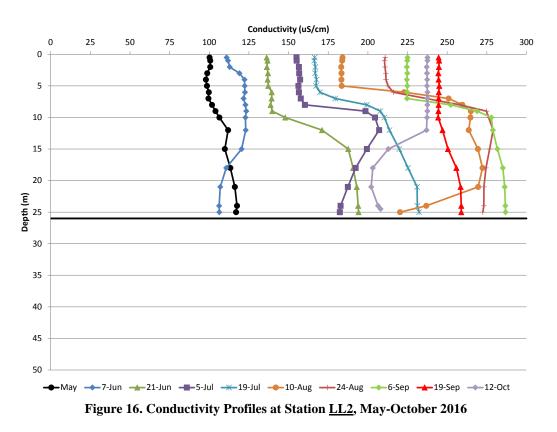
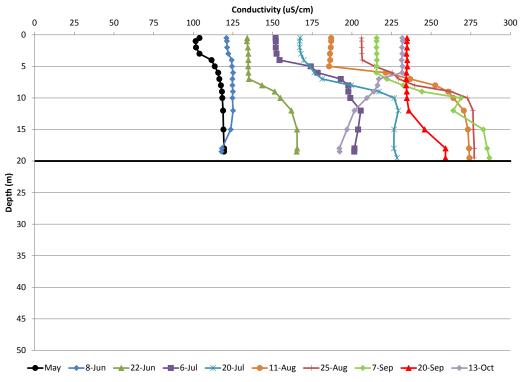
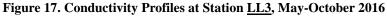
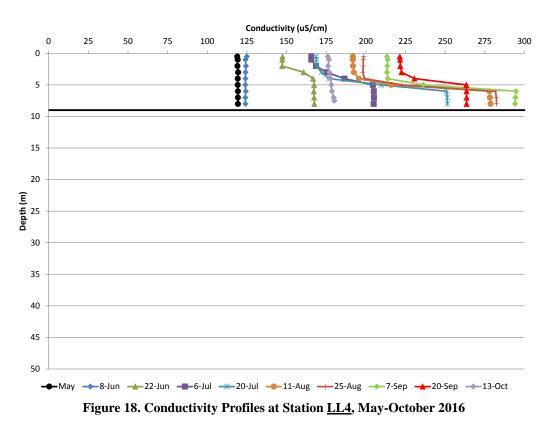





Figure 14. Conductivity Profiles for Station <u>LL0</u>, May-October 2016







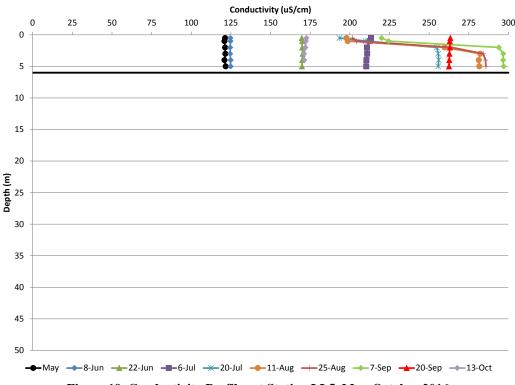


Figure 19. Conductivity Profiles at Station LL5, May-October 2016

3.2.3 DISSOLVED OXYGEN

Maximum epilimnetic DO concentrations were very similar between all six stations and ranged from 11.4 to 12.2 mg/L (Figures 20 to 25). Maximum epilimnetic DO concentrations ranged from 10.7 to 14.5 mg/L in 2010, 11.9 to 12.4 mg/L in 2011, 11.4 to 12.5 mg/L in 2012, 11.6 to 13.4 mg/L in 2013, 12.0 to 14.1 mg/L in 2014, and 11.4 to 14.5 mg/L in 2015. Epilimnetic water was super saturated in May at stations LL2 and LL3, indicating high photosynthetic rates (Figures 22 and 23). Concentrations were highest and super saturated at stations LL0, LL1, and LL4 in August around 4 to 7 m, also due to photosynthetic activity. High concentrations at LL0 similarly occurred in July in 2013, August in 2014, and July 2015.

During the 2016 monitoring period, minimum DO concentrations (0.0 mg/L) occurred near the bottom at the two deepest stations LL0 and LL1 (Figures 20 - 21). Hypolimnetic DO below 25 m declined progressively with time at these two sites. The deep hypolimnetic volume was probably not exchanged/diluted appreciably by the interflow (especially at LL0), as indicated by conductivity profiles (Figures 14 – 15), allowing DO at depth to gradually deplete. Anoxia (< 1 mg/L) was reached earlier (July) at LL0 than at LL1 (August). Vertical mixing of bottom waters and increased DO at station LL1 and LL2 occurred in September, but not until October at station LL0.

Minimum DO concentrations in 2010 – 2015 also occurred at the two deepest stations (LL0 and LL1), but in 2011 minimums were substantially higher (3.2, 6.9 mg/L) at those sites than observed in 2015 (all zero mg/L), in 2014 (all zero mg/L), in 2013 (zero and 0.9 mg/L), in 2012 (1.6, 0.5

mg/L), or in 2010 (0.13, 2.3 mg/L). Minimum DOs in 2013 through 2016 were the lowest observed of the seven years. Average water column DO in 2016 ranged from 7.3 to 10.2 mg/L, with the lowest values at the two deepest stations.

The effect of interflow on DO depletion, as indicated by conductivity profiles, was most pronounced during late July, August and September at stations LL0, LL1, and LL2 in the lacustrine zone, and to a lesser extent at LL3 in the transition zone. The DO depletion in the interflow zone (approximately 10 - 20 m) in August and September in 2016 was not as great as that in 2015. DO depletion in the metalimnion to levels less than 6 mg/L occurred only at Station LL0 in 2016 and only during late August and September. Dissolved oxygen depletion in 2015 occurred at multiple stations in August and September and at Station LL0 during July through September. This pattern of DO depletion persisted until October at LL0, as was the case in 2015, but minimum metalimnetic DO concentration was much higher in 2016 (7.4 mg/L vs. 5.5 mg/L). Unlike 2015, October hypolimnetic DO in 2016 was higher than in the interflow influenced metalimnion.

The pattern of plunging interflow effect on DO is further shown by combining profile data from the low-flow, high inflow conductivity summer period for the lacustrine zone (Figure 26). The marked decline in DO in the metalimnion below about 6 m corresponds with high conductivity water that plunged into the upper reservoir interflow, usually between 6 to 24 m. The plunging inflow likely carried DO-demanding organic matter from the productive transition and riverine zones. This pattern is similar to those in 2014 and 2015. However, it is likely that algae produced in the epilimnion may have also settled and contributed to hypolimnetic DO depletion.

Volume weighting DO concentrations is a method that provides an average DO concentration throughout the water column. Average volume-weighted DO concentrations were calculated for each station and sampling date using DO data from 9 m and deeper and CE-QUAL-W2 model segment volumes below 8.5 m (Avista and Golder Associates; Table 6). The purpose was to be consistent with the method Ecology used to produce Table 7 in the DO TMDL report. More specifically, the calculation was completed by the following procedure.

At each station, for each sampling day, measured DO concentrations from 9 m and deeper were multiplied by their associated volumes of water, products were summed, and then divided by the total volume of water at each station from 8.5 m and deeper. The volumes of water were obtained from the CE-QUAL-W2 model segments identified in the DO TMDL.

The lacustrine zone average volume-weighted DO includes concentrations from LL0, LL1, and LL2 but not the very small portion of the hypolimnion at station LL3.

	1									
	Volume-Weighted DO (mg/L)									
Station	May 17-18	June 7-8	June 21-22	July 5-6	July 19-20	August 10-11	August 24-25	September 6-7	September 19-20	October 12-13
LLO	9.4	9.2	7.9	7.2	6.2	5.2	4.1	3.7	4.2	8.3
LL1	9.8	9.5	8.2	7.8	6.7	5.5	6.0	6.2	7.9	8.6
LL2	9.9	9.4	9.1	8.1	8.2	7.1	7.0	7.7	8.9	9.2
LL3	10.6	9.2	9.5	7.6	8.2	8.8	8.9	9.0	9.4	9.7
LL4					-	-				
LL5					-	-				
Lacustrine Zone only Average (LL0, LL1, LL2)	9.7	9.4	8.4	7.7	7.0	5.9	5.7	5.9	7.0	8.7

Table 6. Volume-Weighted hypolimnetic DO concentrations in Lake Spokane, during May-October2016, using DO concentrations determined from 9 meters and deeper

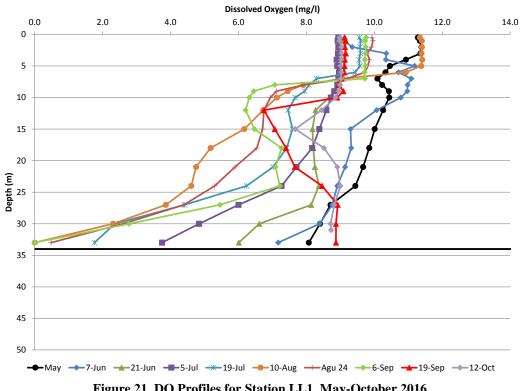
Volume-weighted DO concentrations for the hypolimnion from 15 m and deeper were also calculated using the same procedure and model segment volumes (Table 7). The lowest volume-weighted hypolimnetic DO (3.0 mg/L) observed at any site below 15 m in 2016 was during the early September sampling event at station LL0 (Table 7), which was 1.1 mg/L higher than in 2015 and only 0.4 mg/L higher than in 2014. The minimum average volume-weighted whole hypolimnetic DO in the lacustrine zone was 5.1 mg/L during late August and was higher than in 2015 (4.5 mg/L) but lower than in 2014 (6.0 mg/L) and 2013 (5.8 mg/L). Water residence times in 2013, 2014 and 2016 were about half that in 2015. However, timing of the minimum average whole hypolimnetic DO in late August, 2016, was similar to that in 2015 (late July/late August), 2014 (late July/early August) and in 2013 (late August).

While DO improved in Lake Spokane during years shortly after 1977, when 85% of point-source effluent phosphorus was removed from the inflowing river, and had improved further by 2010, the levels observed in 2016 still do not meet the surface water quality standard in the hypolimnion during portions of the critical summer season.

	Volume-weighted DO (mg/L)									
Station	May 17-18	June 7-8	June 21-22	July 5-6	July 19-20	August 10-11	August 24-25	September 6-7	September 19-20	October 12-13
LLO	9.3	8.9	7.6	6.4	5.6	4.6	3.3	3.0	4.0	8.1
LL1	9.4	9.0	8.0	7.2	6.0	4.5	5.3	6.1	8.0	8.6
LL2	9.7	8.9	9.2	7.4	8.0	7.0	6.5	8.4	9.3	9.1
LL3	10.5	8.4	9.6	7.0	7.5	8.9	9.1	9.4	9.6	9.7
LL4					-	-				
LL5					-	-				
Lacustrine Zone only Average (LL0, LL1, LL2)	9.5	8.9	8.2	7.0	6.5	5.3	5.1	5.8	7.1	8.6
Whole Hypolimnetic Average (LL0, LL1, LL2, LL3)	9.7	8.8	8.6	7.0	6.8	6.2	6.1	6.7	7.7	8.9

Table 7. Volume-Weighted Hypolimnetic DO concentrations in Lake Spokane, during May-October2016, using DO concentrations determined from 15 meters and deeper

Average lacustrine, volume-weighted DOs in 2016 were similar below 9 m and below 15 m, differing by only 0.3 mg/L on average with a range of 0 to 0.7 mg/L (Tables 6 and 7). Average lacustrine DOs were slightly higher in July and August below 9 m than below 15 m; this was similar to the pattern observed in 2014 and 2015. Average lacustrine DOs below 9 m were 0.8 mg/L higher in 2016 than in 2015, while the 2015 levels were 1.4 mg/L less than those in 2014. The largest difference in DOs below 9 m between 2015 and 2016 was during the early summer period (June and July) when average DOs in 2016 ranged from 1.1 to 1.7 mg/L higher than those in 2015 and during October when DOs were 1.5 mg/L higher. This was also the case for lacustrine, DOs below 15 m, that averaged (volume-weighted) 1.1 mg/L higher in 2016 than those in 2015 with the largest differences occurring during the same months – June, July, and October.


The rationale for including depths between 9 and 15 m for the TMDL was probably to include DOs in the metalimnion that are lower at times than in the hypolimnion, due to the influence of the interflow zone. However, DOs were usually consistently lower below 15 m than below 9 m, as shown in Figures 20 and 21 and by the volume-weighted average concentrations. That may be partly due to more oxygen input by photosynthesis in recent years given the increase in transparency. Transparency extended to 9 m in July. Given that the Secchi disk disappears at about 15% surface light intensity, the photic zone depth (1%) was about 22 m in July. While photosynthesis was possible at that depth, maximum photosynthesis was probably around 3 - 4 m, which is also indicated in Figures 20 and 21.

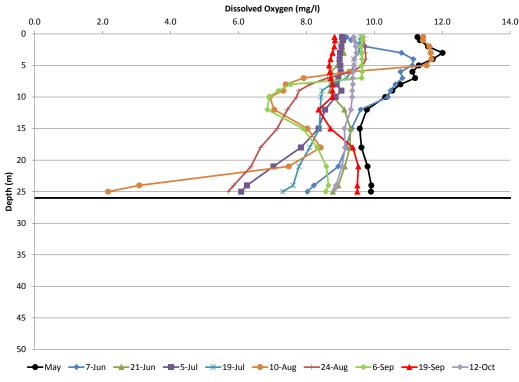
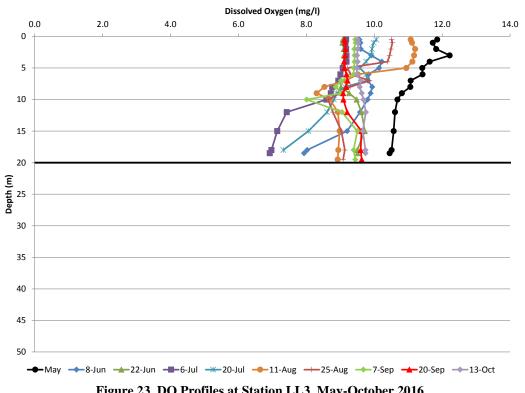
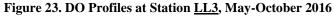
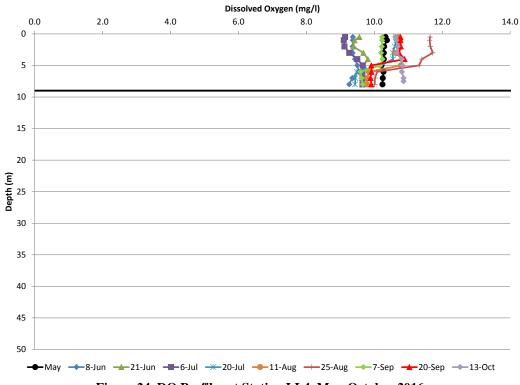
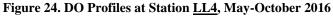


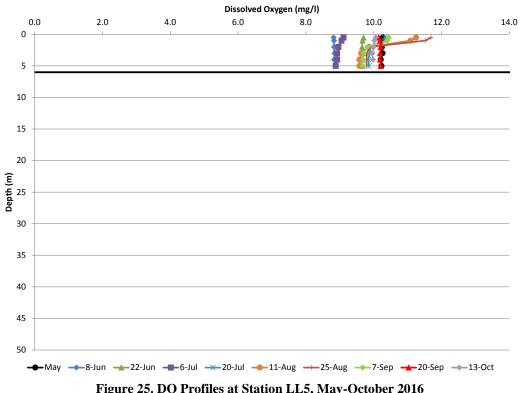
Figure 20. DO Profiles for Station LL0, May-October 2016











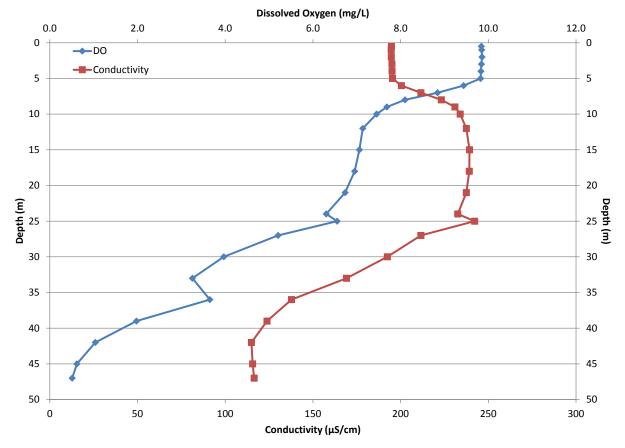
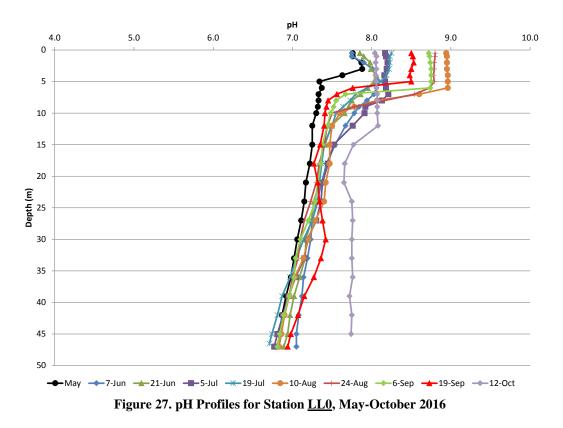
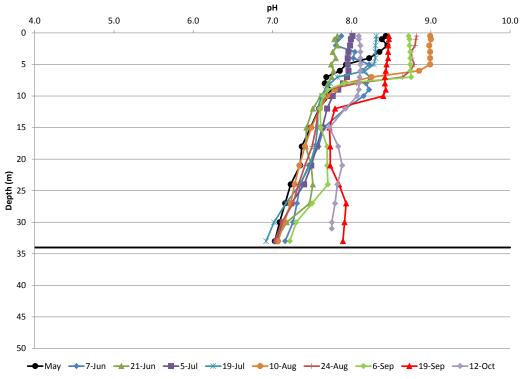


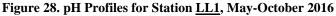
Figure 26. Average DO and Conductivity Profiles for Stations LL0, LL1, and LL2 from July 5th through September 19th, 2016.

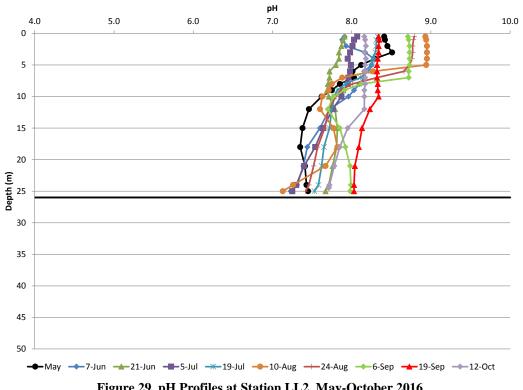
3.2.4 PH

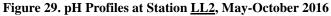
The range in pH through the water column was 6.7 to 9.0 at the six stations during 2016 (Figures 27 through 32). The range in water column average pH was narrower, less than one pH unit (7.3 to 8.1). The highest pH levels occurred in the epilimnion during early August at the deeper stations (LL0, LL1, and LL2) and during late August at the shallower stations (LL4 and LL5). The highest pH levels were in the epilimnion probably due to photosynthesis by phytoplankton which extract CO_2 from water faster than it can equilibrate by diffusion from the atmosphere. High rates of phytoplankton production can raise pH to levels above 10, although that has not occurred in Lake Spokane during the past six years. Levels of pH above the water quality criterion of 8.5 usually occurred within the top 8 m at LL0, LL1, LL2, and LL3 in August and September, in the top 4 m at station LL4 in late July through September, and just at the surface at station LL5 in August and September. These depths are all well within the photic zone (see Section 3.2.7 Transparency).

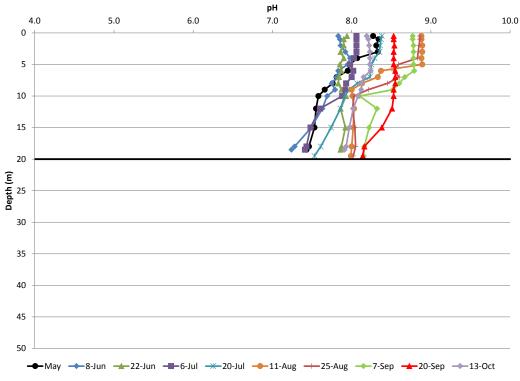

Residence time was long in 2016; 1.2 to 3 times longer than during 2010-2014, but shorter than in 2015. That allowed more time for photosynthetic activity, phytoplankton growth and production, which in turn likely raised pH above the 8.5 water quality criteria. This was also the case in 2015

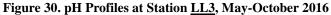


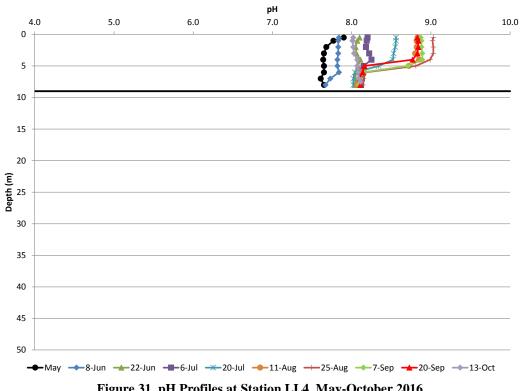

when residence time was exceptionally long; 2 to nearly 5 times as long as during 2010-2014. Similarly, in 2014 maximum pH levels (9.0 to 9.2) occurred in the top 4 to 6 m at all stations, even at station LL5 in the riverine zone during low flow and longer water retention time. This was also the case in 2013 when residence time was slightly longer than in 2014, especially in late summer, allowing more time for phytoplankton activity, with pH reaching 9.1, well above the 8.5 water quality criterion. There were only a few data points in August 2012 at LL5 that were slightly above the water quality criteria, with the highest at 8.6.

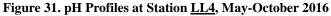

Chlorophyll at LL5 was higher (5.1 to 7.7 μ g/L) during August and early September in 2016 and corresponded with pH levels ranging from 8.9 to just over 9.0 at the surface. This was also the case in 2015 when high chl (5.9 to 11.7 μ g/L) was associated with surface pH levels greater than 9.0 during July through September. Chlorophyll in 2014 peaked on August 21 at 18.2 μ g/L at LL5 and corresponded with the peak in pH of 9.2. This was also the case in 2013 when chl at LL5 peaked on September 10 at 9.6 μ g/L and corresponded with the peak in pH.

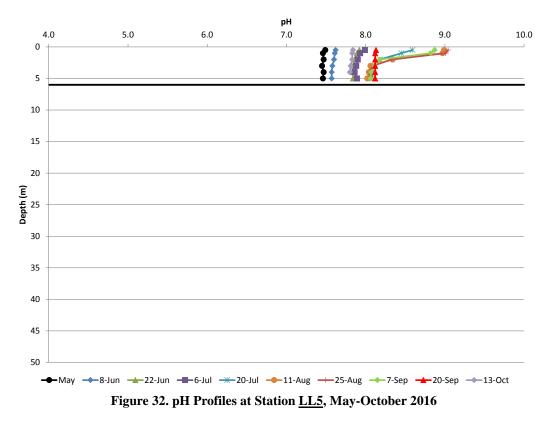












3.2.5 NUTRIENTS

Phosphorus

Concentrations of TP ranged from about 3 to 122 μ g/L over all depths during 2016. Soluble reactive phosphorus (SRP) concentrations ranged from about 1 (non-detect [ND]) to 56 μ g/L. Total P and SRP were usually highest in the hypolimnion (15 m and deeper) at LLO, LL1, and LL2 with levels usually increasing in July and decreasing in late August and September (Figures 33 through 38). The highest TP concentration (122 μ g/L) was one meter off the bottom at LLO in early August. Highest TPs at the other lacustrine stations (LL1 and LL2) occurred near the bottom in late July or early August. Total P was consistently higher in bottom waters at the four down reservoir sites, with the exception of one event at LL3 in late July when it was highest at 10 m.

Bottom TP concentrations at stations LL0 and LL1 were higher than in 2015, especially in the spring. Total P near the bottom was consistently higher than at 30 m at LL0, which was opposite to the pattern in 2015. Maximum hypolimnetic TP at LL0 was also much higher than in 2015; 48 vs 40 μ g/L at 30 m and 122 vs 32 μ g/L near the bottom. Maximum bottom TP at station LL1 was also higher in 2016 than in 2015 (72 vs 59 μ g/L) and it occurred earlier in the summer. However, high bottom TPs persisted for most of the summer in both years.

Epilimnetic (0.5 and 5 m) TP at the lacustrine stations was consistently around 10 μ g/L or less throughout the monitoring period. Surface TPs were also low – around 10 μ g/L – at the transition (LL3) site but slightly higher (near 20 μ g/L) at LL4 and riverine (LL5) sites.

The patterns for SRP at stations LL0, LL1, and LL2 were similar to those for TP, although SRP content was much lower than TP in surface waters. Similarly, the highest SRP occurred near the bottom coincident with low DO. In late September, there was a sharp decline in bottom SRP, as well as TP, at station LL1, which was most likely the result of mixing bottom water with more DO enriched metalimnetic water. A peak SRP of 56 μ g/L occurred near the bottom at LL1 in early August, and corresponded to a DO of zero mg/L. Minimum bottom DOs ≤ 2 mg/L occurred on numerous occasions in bottom water in 2016; in July through September at LL0 and late July through early September at LL1. Anoxic conditions did not occur at LL2 or in the transition and river sites. The highest SRP concentrations also occurred near the bottom in 2015, and there was a consistent pattern with DO, similar to that in 2016.

Total P and SRP were usually higher near the bottom at LL3, similar to previous years (Figures 39 and 40). A TP of over $40 \mu g/L$ occurred at 10 m in July that appeared anomalous, compared to levels at LL2 or LL4, and SRP at 10 m.

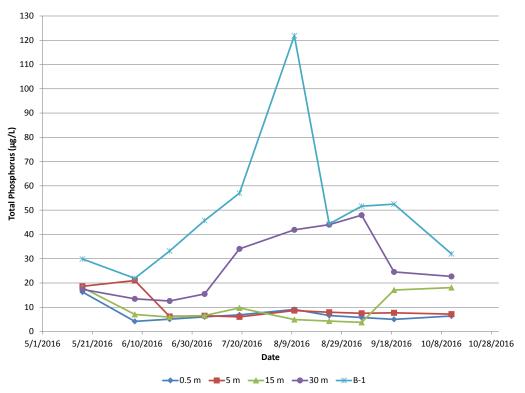
Total P was between 20 and 30 μ g/L at 4 m several times at LL4 during the summer, and usually higher than at the surface or bottom (Figure 41). Total P was much higher than SRP, which was always less than 5 μ g/L (Figure 42). In 2015 TP was higher with a peak TP of 44 μ g/L occurring at 0.5 m in late July. Total P at 0.5 and 4 m was usually lower in 2016 than in 2015. Surface TPs in 2016 were below 20 μ g/L and TP at all three depths remained below 30 μ g/L. Also, TP was not as closely related to chl at LL4 as in 2015.

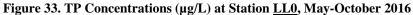
Surface TP did not exceed 20 μ g/L, similar to LL3 and LL4, at station LL5 (Figure 43). Surface TP in 2015 was much higher in July (35 and 42 μ g/L) and early September (52 μ g/L). Bottom TPs were relatively stable throughout the monitoring period ranging from just under 8 to 19 μ g/L (Figure 43). The pattern in 2016 was similar to that in 2014 when both surface and bottom concentrations were stable, with only one relatively low maximum in August at just under 30 μ g/L. Maximum TPs in 2015 were 42 and 52 μ g/L and in 2013, the maximum was even higher with 65 μ g/L in August at 0.5 m.

Volume-weighted whole water column TP concentrations in 2016 ranged from 7 to 19 μ g/L at LL5 with a mean of 12 μ g/L for the monitoring period (Table 8). Volume-weighted TPs were slightly higher in 2015 at LL5 ranging from 7 to 38 μ g/L with a mean of 19 μ g/L. In 2013 and 2014, volume-weighted TPs were similar to that in 2016, usually around 15 μ g/L or less. Soluble reactive P was less than 5 μ g/L at LL5 in 2016 (Figure 44). Also, SRPs were nearly always less than 5 μ g/L in 2013, 2014 and 2015 at LL5.

With the exception of May, epilimnetic TPs in the lacustrine zone (LL0, LL1, LL2) were usually less than or equal to about 10 μ g/L (Figure 45). The levels were similar in 2015. Seasonal patterns and concentration ranges have been rather consistent over the seven year period averaging a little less than 10 μ g/L during June-September. Transition and riverine zone (LL3, LL4, and LL5) TP was often greater than 10 μ g/L and once slightly above 20 μ g/L at LL5 in 2016. In 2015, transition and riverine zone TPs were also mostly greater than 10 μ g/L and above 20 μ g/L at 0.5 m on 4 occasions at LL5. Surface TP was not quite as high as in 2015 but was occasionally higher than

near bottom concentrations. Soluble reactive P was usually less than 5 μ g/L in the epilimnion at all sites.


Volume-weighted water column TPs were usually similar throughout the reservoir in 2016 with the exception of a few slightly higher levels at LL0 and LL4 (Table 8; Figure 46). Total P was higher at LL4 and LL5 than at down-reservoir stations (with the exception of LL0) during late August through September (Figure 46; Table 8). Volume-weighted TP at LL0 was greater due to higher concentrations at 30 m and near the bottom. Volume-weighted TPs at LL0 in 2016 were generally higher than in 2013 – 2015, but similar to those in 2012. Volume-weighted TPs were below 25 μ g/L at all stations, ranging from 6 to 24 μ g/L. This range is slightly lower than in 2015 which was between 4 and 38 μ g/L.


The generally higher water column TPs at LL4 and LL5 during August and September in 2016 were similar to those from 2013 - 2015, but contrasted with the pattern in 2012. In 2016, volume weighted TP concentrations at LL4 were almost always higher than LL5 indicating there is some additional source of phosphorus in these zones.

2016 Sampling Event	Volume Weighted Water Column TP (µg/L)									
	LL0	LL1	LL2	LL3	LL4	LL5				
May 17-18	18	20	23	19	18	19				
June 7-8	13	7	6	9	10	9				
June 21-22	9	9 11		9	9	9				
July 5-6	11	12	13	14	14	9				
July 19-20	19	19	13	23	13	12				
August 10-11	24	22	13	12	20	14				
August 24-25	20	10	13	13	16	16				
September 6-7	21	11	10	12	20	16				
September 19-20	18	10	10	10	13	7				
October 12-13	17	12	13	21	11	12				
Mean	17	14	12	14	14	12				
Summer Mean (Jun-Sep)	17	13	11	13	15	11				

Table 8. Volume-Weighted Water Column TP Concentrations for Monitoring Stations in 2016

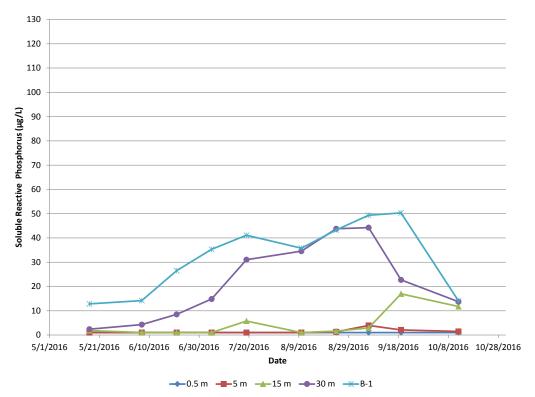
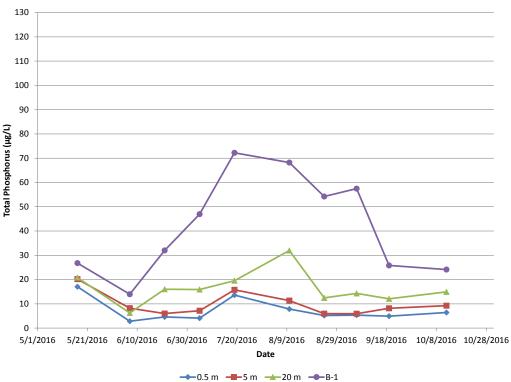
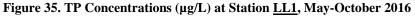




Figure 34. SRP Concentrations (µg/L) at Station <u>LL0</u>, May-October 2016

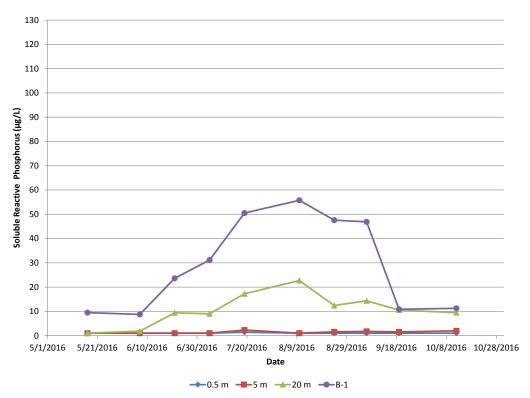


Figure 36. SRP Concentrations (µg/L) at Station <u>LL1</u>, May-October 2016

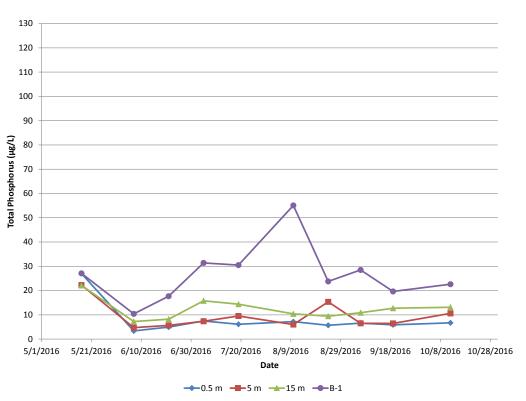


Figure 37. TP Concentrations (µg/L) at Station LL2, May-October 2016

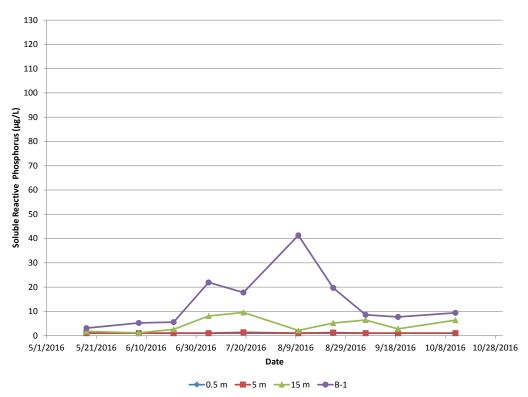


Figure 38. SRP Concentrations (µg/L) at Station <u>LL2</u>, May-October 2016

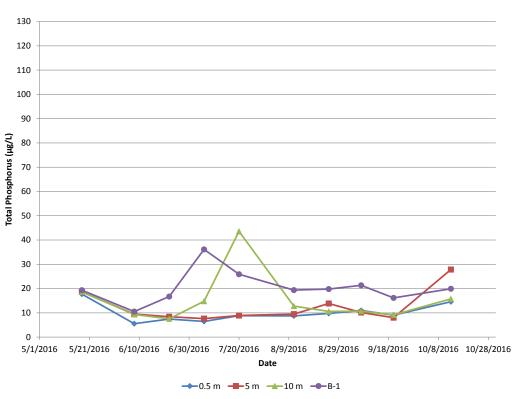


Figure 39. TP Concentrations (µg/L) at Station LL3, May-October 2016

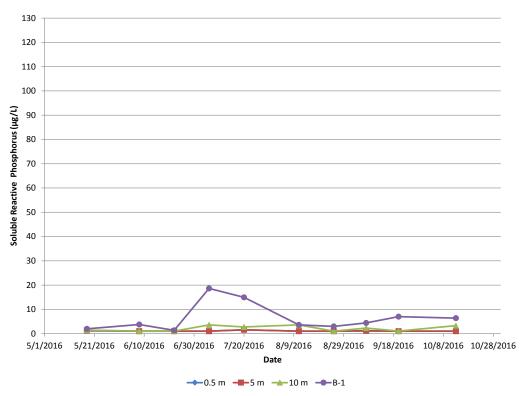
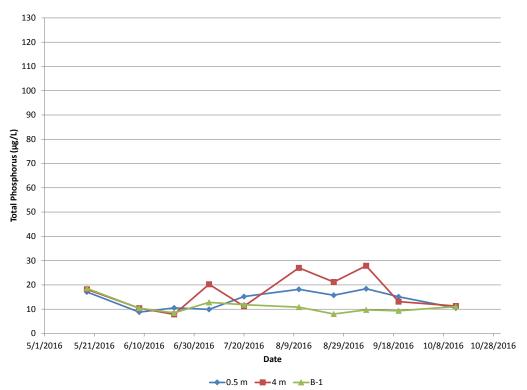
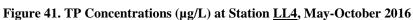




Figure 40. SRP Concentrations (µg/L) at Station LL3, May-October 2016

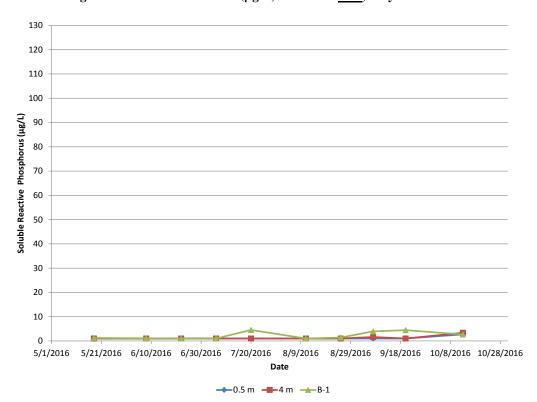


Figure 42. SRP Concentrations (µg/L) at Station <u>LL4</u>, May-October 2016

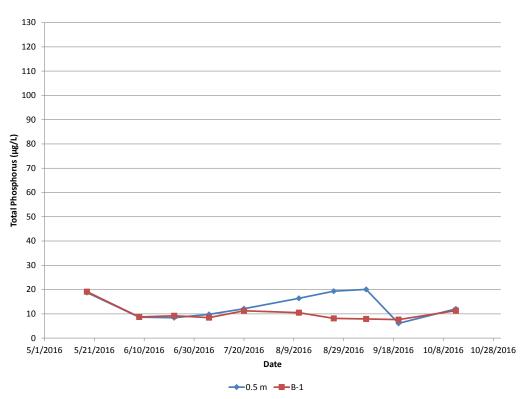


Figure 43. TP Concentrations (µg/L) at Station LL5, May-October 2016

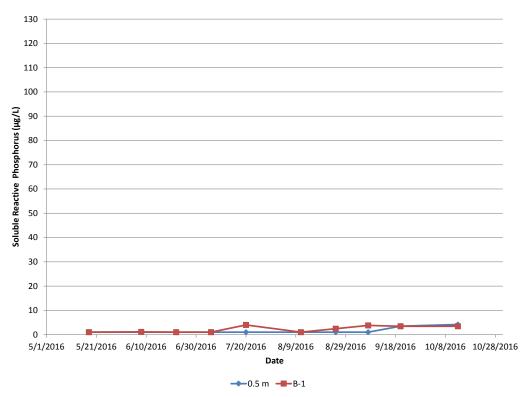


Figure 44. SRP Concentrations (µg/L) at Station LL5, May-October 2016

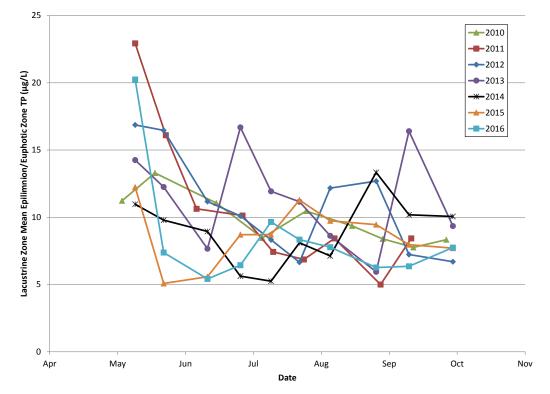


Figure 45. Mean Epilimnion TP Concentrations in the Lacustrine Zone in Lake Spokane, 2010-2016

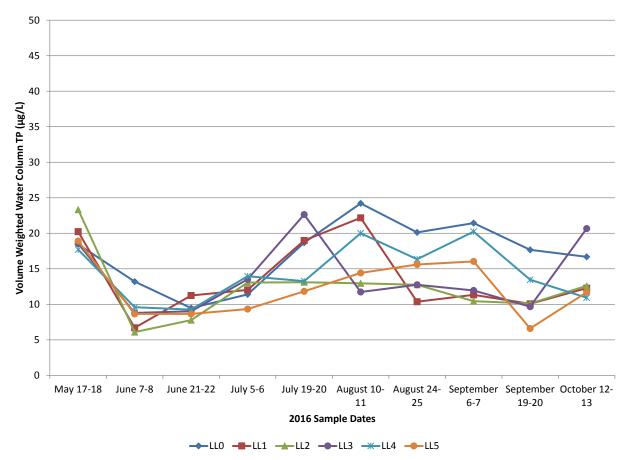


Figure 46. Volume-Weighted Water Column TP Concentrations, 2016

Nitrogen

Total nitrogen (TN) at all six stations ranged from about 450 to 2760 μ g/L 2016. Total N was similar or slightly lower in 2015, ranging from 470 to 2300 μ g/L. Nitrate+nitrite N (NO₃+NO₂-N) is largely NO₃ which is utilized by algae; ranged from about 290 to 2320 μ g/L. Also, most of the TN was nitrate+nitrite. Average lacustrine epilimnetic TN and nitrate-N concentrations during June-September were 912 and 683 μ g/L, respectively, and similar to those in 2015 (871 and 686 μ g/L). Average lacustrine epilimnetic TN and nitrate-N during June – September were lower in 2014 at 606 and 480 μ g/L, respectively.

Both TN and nitrate-N were highest at intermediate depths (15 - 20 m) at LL0 – LL1, and at both intermediate (10 - 15 m) and bottom at LL2 – LL3, but only at the bottom at LL4 – LL5. This pattern indicates that high nitrogen, slightly denser water entered the reservoir near the bottom of the riverine and transition zones, then plunged to the intermediate depths in the lacustrine zone. The same pattern was observed in 2015.

Nitrogen tended to increase at most sites, especially near or at the bottom (Figures 47 through 58) starting in late June, and more in the metalimnion and upper hypolimnion than in the epilimnion at most sites. Higher concentrations were generally observed in the hypolimnion and bottom water at all stations, except at station LL0 where levels at the bottom were much lower than those at 15

and 30 m. Bottom concentrations at LL0 increased in October when the water column began to mix.

Increased hypolimnetic and metalimnetic concentrations during summer were probably due to the plunging inflow containing high N. Late summer hypolimnetic and metalimnetic N concentrations were roughly equal to those at the bottom at LL3 – LL5, which represent the plunging inflow. Groundwater was likely an important source of nitrate-N during late summer low flow when dilution of groundwater decreased (see 3.2.9). The increase in bottom TN to about 2,600 μ g/L at LL4 and about 2,800 at LL5 correspond to the increase in river TN at Nine Mile Bridge (see 3.2.9). These higher N concentrations at the bottom of the up-reservoir sites, along with the highest concentrations in the hypolimnion at the lacustrine sites (LL0, LL1, LL2), suggests that plunging river inflow was more likely the main source of hypolimnetic nitrogen.

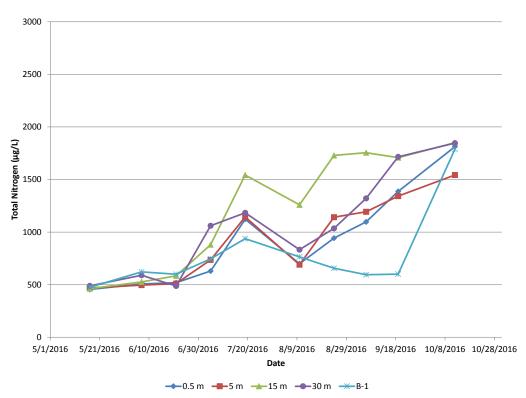


Figure 47. TN Concentrations (µg/L) at Station LL0, May-October 2016

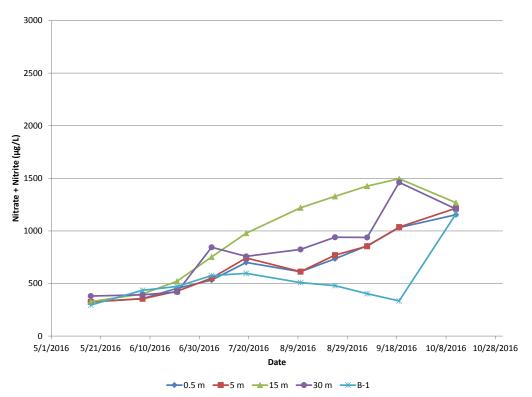


Figure 48. NO₃+NO₂ Concentrations (µg/L) at Station LL0, May-October 2016

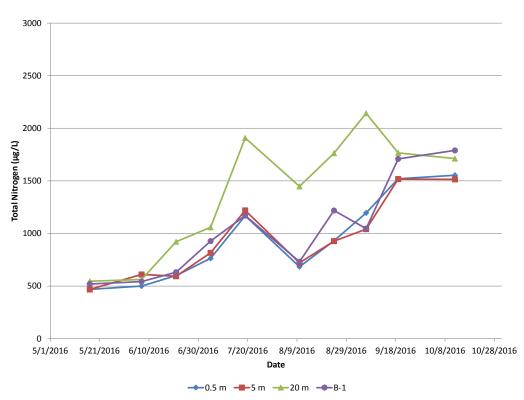


Figure 49. TN Concentrations (µg/L) at Station LL1, May-October 2016

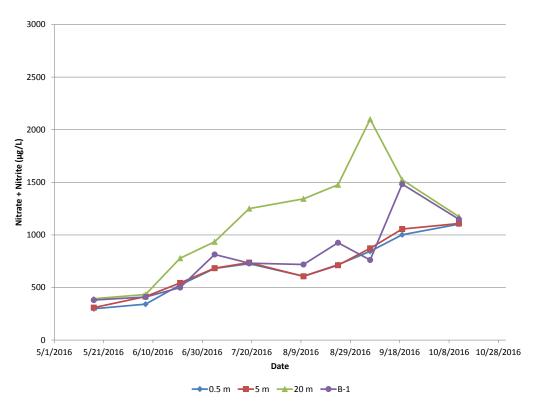


Figure 50. NO₃+NO₂ Concentrations (µg/L) at Station LL1, May-October 2016

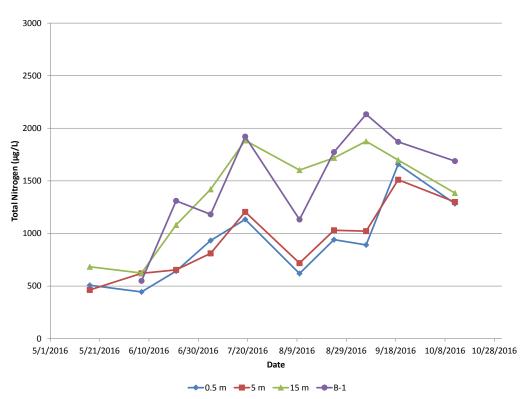


Figure 51. TN Concentrations (µg/L) at Station LL2, May-October 2016

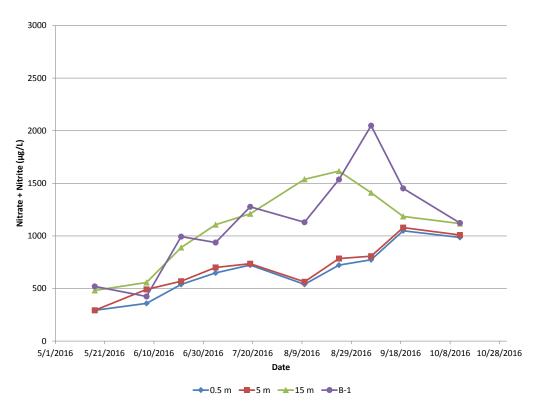


Figure 52. NO₃+NO₂ Concentrations (µg/L) at Station LL2, May-October 2016

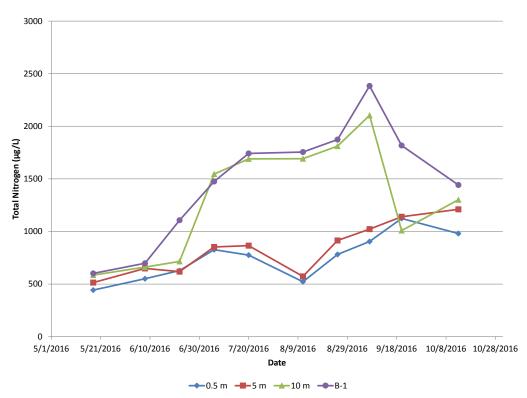


Figure 53. TN Concentrations (µg/L) at Station LL3, May-October 2016

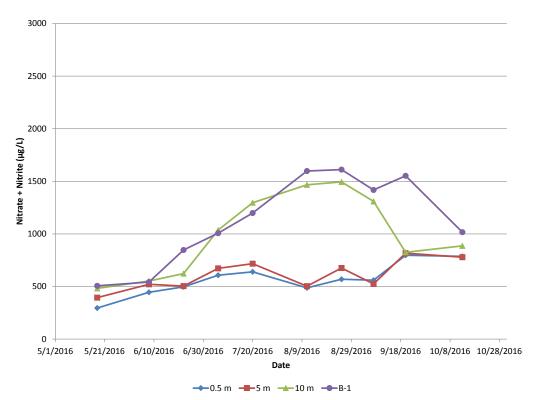


Figure 54. NO3+NO2 Concentrations (µg/L) at Station LL3, May-October 2016

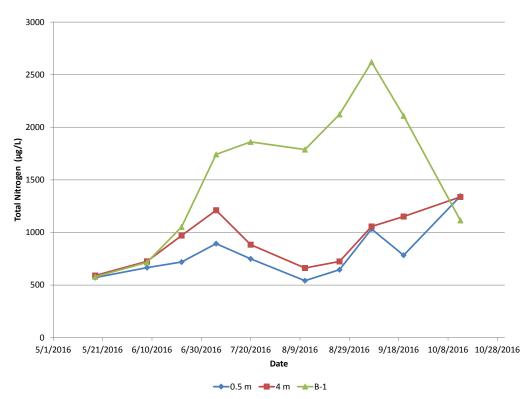


Figure 55. TN Concentrations (µg/L) at Station <u>LL4</u>, May-October 2016

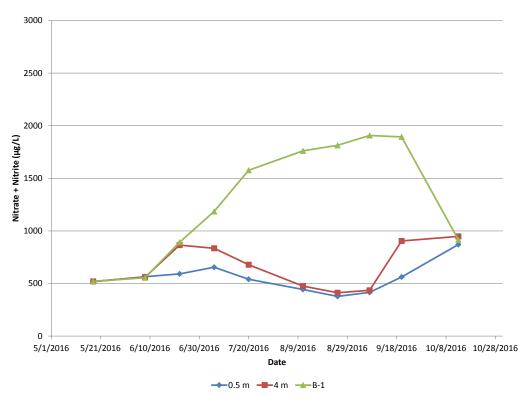


Figure 56. NO₃+NO₂ Concentrations (µg/L) at Station LL4, May-October 2016

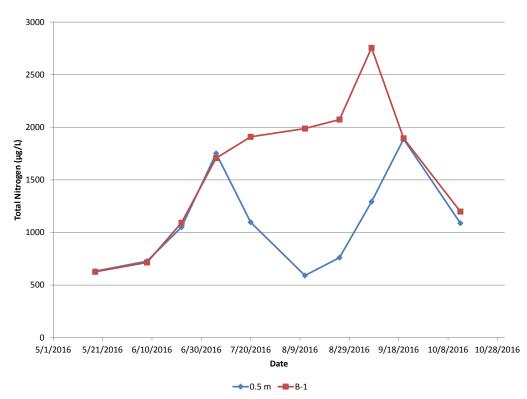


Figure 57. TN Concentrations (µg/L) at Station LL5, May-October 2016

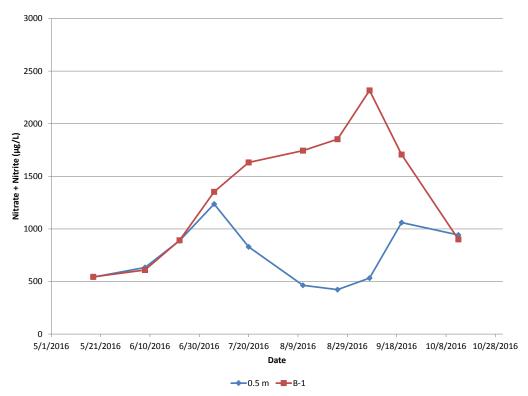


Figure 58. NO₃+NO₂ Concentrations (µg/L) at Station <u>LL5</u>, May-October 2016

3.2.6 PHYTOPLANKTON

Chlorophyll (chl) concentrations at the six stations ranged from 0.5 to 14.4 μ g/L in 2016 with a lower maximum than in 2015 (0.2 to 18.2 μ g/L) and 2014 (0.5 to 25.4 μ g/L). Maximums at lacustrine sites were usually lower than in 2015, as well as at the transition and riverine zone sites. Maximums were observed in May at the lacustrine sites in both 2015 and 2016. The maximum for the whole reservoir, 14.4 μ g/L, was observed at LL4 at 4 m in early August. The maximum in 2015 of 18.2 μ g/L was also observed at LL4 at 4 m in early September. The seven-year maximum of 25.4 μ g/L was determined in 2014.

Chlorophyll was usually highest at the 5 m depth (or 4 m depth at LL4) in 2016 (Figures 59 through 64). That was also the case in 2012 to 2015. However, chl varied more seasonally than with depth at the two up-reservoir sites, where maximums occurred in August and September, similar to conditions during both 2013, 2014, and 2015.

Chlorophyll was relatively high in May at the lacustrine sites, probably reflecting the end of the spring diatom bloom (Figures 59 through 64). Relatively high chl occurred again in August at all sites. This pattern was similar to that observed in 2015. The higher summer levels in 2016 did not correspond with maximum TP concentrations at LL4, as was the case in 2015, but higher chl did correspond to higher surface TP at LL5 in late summer (Figure 43). Chlorophyll at LL4 at 4 m increased sharply in early August to around 14 μ g/L before decreasing and peaking again to only 9 μ g/L in early September. Surface chl at LL4 rose to almost 11 μ g/L in early September. The seasonal pattern of chl at LL4 and LL5 was similar in 2015 and 2016, but maximums were greater and lasted longer in 2015.

The increased chl at LL4 and LL5 in early August was associated with a very green color, clumps of algae on the surface and reduced transparency, which persisted at both sites through early September. This condition also occurred in 2015, as well as in 2014, but in late August. Algal scums were observed just downstream of LL5 and in between LL4 and LL5 starting in early August in 2015. However, there were no observed or reported algal scums in the vicinity of LL4 and LL5 in 2016. Also, there were no scums in 2014 even though there was a large bloom. Conditions in 2015 were similar to those in previous years (2010 and 2012), in which a thick scum of accumulated algae (primarily cyanobacteria) occurred up-reservoir of LL4, just down-reservoir from the Nine Mile Resort boat launch, as well as at LL5. In 2015, samples collected near LL4 (Suncrest Park) were positive for the cyanobacteria toxin microcystin at levels above the state guidelines. No samples were collected for toxicity during 2016 due to the lack of a scum. Scums were absent in 2016 even though residence time was longer (43 days) than in 2010 and 2012.

Composition of the phytoplankton showed that diatoms (*Chrysophyta*) were dominant at all stations during the spring, based on both abundance (cell counts) and biovolume (Figures 65-76). Cyanobacteria abundance increased at all sites in July and August, but were represented by a relative significant biovolume only in early August and early September at LL5. In 2014 and 2015, cyanobacteria followed a similar pattern but with substantial biovolumes at both LL4 and LL5 in August 2014, but only at LL5 in late July and August. Biovolume of cyanobacteria was much less at LL5 in 2016 than in 2015 $(1.3 - 2.0 \text{ vs } 2.2 - 12 \text{ mm}^3/\text{L})$. In 2013, cyanobacteria were not

strongly represented at any site. The pattern in 2014 and 2015 was similar to that in 2012 when diatoms dominated during the spring at all sites, while cyanobacteria dominated cell counts at all sites in early summer in 2015 and late summer in 2012 – 2014. Cyanobacteria abundance was dominant sporadically in August and September in 2016. Green algae (*Chlorophyta*) abundance was dominant throughout the summer at some locations. At station LL4, diatoms were more abundant in late July and late September than green algae or cyanobacteria. Diatoms and green algae tended to represent the greatest biovolume at most sites in 2016, although *Pyrrhophyta* was also high at stations LL4 and LL5.

The seasonal mean percent of biovolume represented by cyanobacteria at the upper reservoir stations (LL4 and LL5) was lower than in 2014 and 2015 (Table 9). However, the cyanobacteria were a minor fraction of the phytoplankton in all years at all sites. Cyanobacteria were more representative at all stations in 2014 than in previous years, including 2016. Also, mean biovolume varied more among sites in 2016, compared to 2015, but was much greater at all stations than in during 2012 - 2014 (Table 9). There were substantial differences between standard cell biovolumes used by the two laboratories, which may account for some of the higher biovolumes in 2015 and 2016 that do not correspond to higher chl concentrations.

The difference in phytoplankton abundance, biovolume and chl, among the years may also be related to the markedly different water residence times in 2015 and 2016 for the whole reservoir (70 and 43 days) and transition/riverine (13 and 8 days). These times were much greater than in 2013 and 2014 for both whole reservoir (37 and 31 days) and the transition/riverine zones (6.9 and 5.9 days) or in 2012 (19 and 3.6 days). Phytoplankton abundance and biovolume were much greater at all stations in 2015 and 2016 than the other years (Table 9), consistent with the much longer residence times, although differences in laboratory techniques may have accounted for some differences between 2015/2016 and previous years. However, mean summer chl at LL4 and LL5 was related to residence time (Figure 77).

Despite a shorter residence time, cyanobacteria comprised a larger mean and maximum percent of the biovolume in 2014 than in 2015 or 2016 (Table 9). Cyanobacteria were also more abundant at LL4 and LL5 in 2013 and 2014. Cyanobacteria would usually be expected to dominate the algal community with longer residence time, because cyanobacteria are slower growing and less tolerant of short residence times. In general, residence times <10 days begin to limit biomass accumulation (Welch and Jacoby 2004). Residence times longer than the seasonal means likely prevail in late summer when cyanobacteria reach maximums, so other factors than residence may account for their maximum biovolumes than residence time alone.

AVISTA

 Table 9. Average summer (June – September) phytoplankton biovolume and percent cyanobacteria at the six stations during 2012-2016.

 Phytoplankton samples collected in 2012 – 2014 were analyzed by Water Environmental Services, Inc. and samples collected in 2015 and 2016 were analyzed by EcoAnalysts, Inc.

Station	Mean Summer Phyto (mm ³ /L)					Mean Summer % Cyanos by Volume					Max Summer % Cyanos by Volume					
	2011	2012	2013	2014	2015	2016	2012	2013	2014	2015	2016	2012	2013	2014	2015	2016
LL0	0.80	0.57	1.77	1.06	2.44	5.61	0.68	0.28	8.73	1.86	0.1	1.79	1.27	24.1	10.2	0.2
LL1	0.40	0.69	1.13	1.07	7.33	3.33	1.56	0.67	7.62	1.27	1.2	7.76	2.48	20.8	4.44	6.0
LL2	0.37	0.77	1.20	1.19	6.15	6.70	0.68	0.56	6.75	0.93	0.4	1.79	1.51	18.6	1.76	2.5
LL3	0.28	0.82	2.16	1.87	8.28	3.99	1.01	0.57	7.75	1.28	1.4	4.18	2.47	37.4	4.82	7.4
LL4	0.39	0.93	3.07	3.73	7.44	11.5	2.80	1.24	8.72	4.44	2.7	11.9	8.62	39.5	18.5	12.4
LL5	0.61	0.67	2.62	2.33	19.5	5.34	0.31	0.64	16.7	8.6	4.9	0.72	1.61	81.3	45	15.9

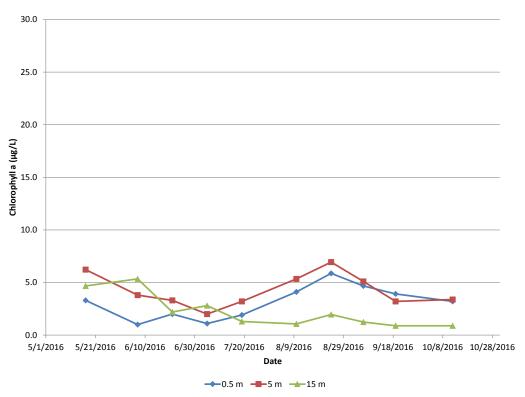


Figure 59. Chl Concentrations (µg/L) at Station LL0, May-October 2016

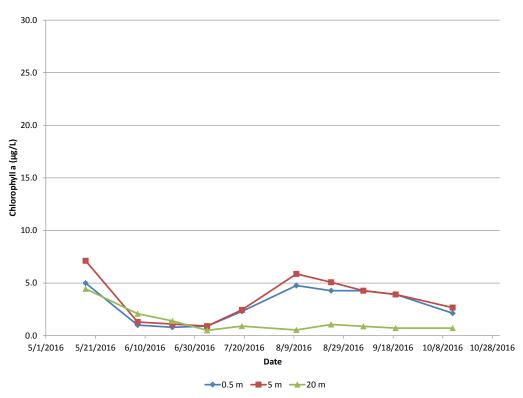


Figure 60. Chl Concentrations (µg/L) at Station LL1, May-October 2016

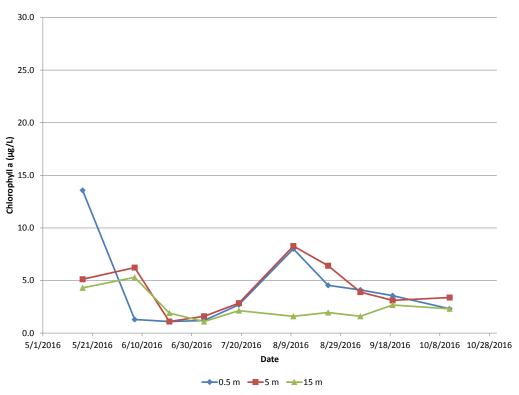


Figure 61. Chl Concentrations (µg/L) at Station LL2, May-October 2016

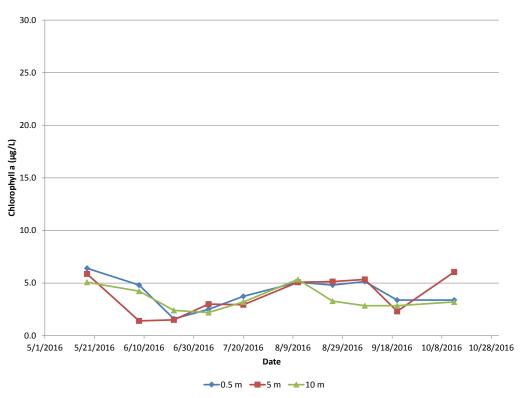


Figure 62. Chl Concentrations (µg/L) at Station LL3, May-October 2016

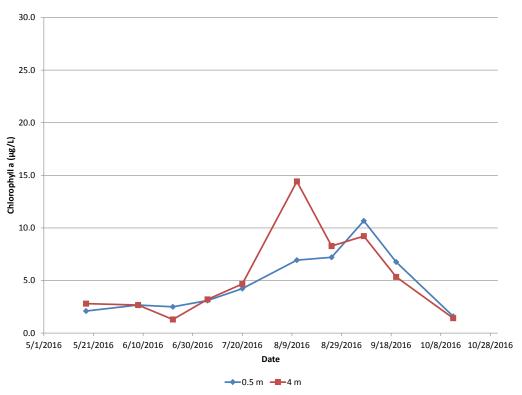


Figure 63. Chl Concentrations (µg/L) at Station <u>LL4</u>, May-October 2016

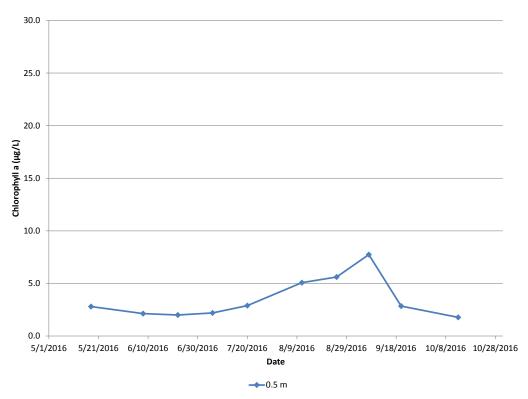
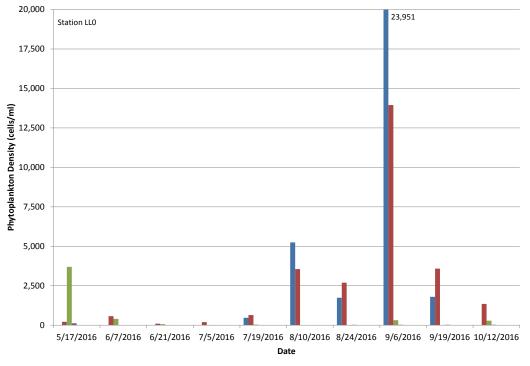



Figure 64. Chl Concentrations (µg/L) at Station LL5, May-October 2016

🛛 Cyanophyta 🔲 Chlorophyta 🔲 Chrysophyta 🔳 Cryptophyta 🔳 Euglenophyta 🔲 Pyrrhophyta 🔳 Rhodophyta 🔳 Undetermined

Figure 65. Phytoplankton Density (cells/ml) at Station LL0, May-October 2016

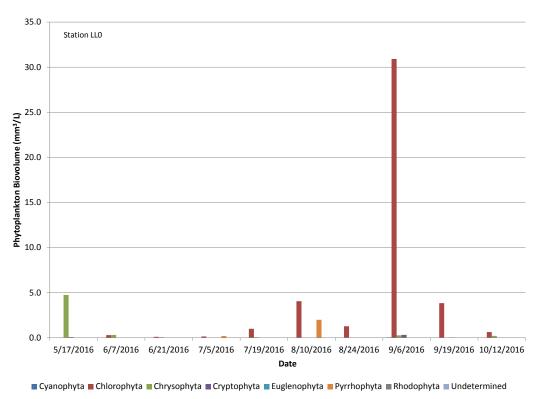
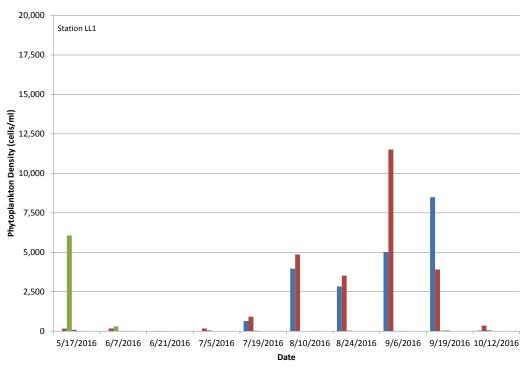



Figure 66. Phytoplankton Volume (mm³/L) at Station <u>LL0</u>, May-October 2016

🛛 Cyanophyta 🗶 Chlorophyta 🗮 Chrysophyta 🗮 Cryptophyta 🗮 Euglenophyta 💻 Pyrrhophyta 🔳 Rhodophyta 🔳 Undetermined

Figure 67. Phytoplankton Density (cells/ml) at Station LL1, May-October 2016

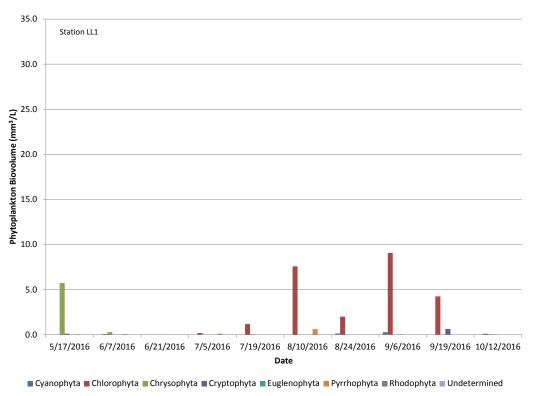
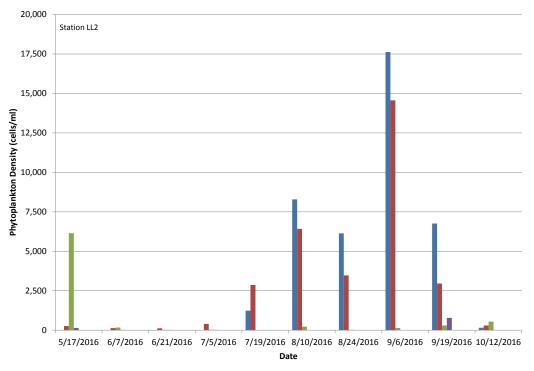



Figure 68. Phytoplankton Volume (mm³/L) at Station <u>LL1</u>, May-October 2016

🛛 Cyanophyta 🗶 Chlorophyta 🗮 Chrysophyta 🗮 Cryptophyta 🗮 Euglenophyta 💻 Pyrrhophyta 🔳 Rhodophyta 🔳 Undetermined

Figure 69. Phytoplankton Density (cells/ml) at Station LL2, May-October 2016

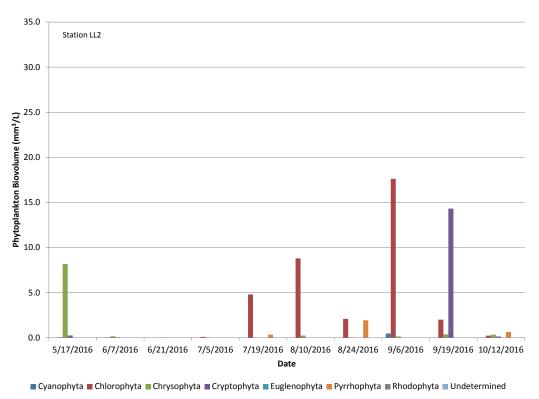
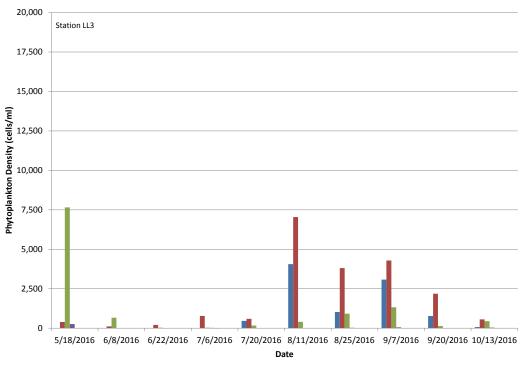



Figure 70. Phytoplankton Volume (mm³/L) at Station <u>LL2</u>, May-October 2016

🔳 Cyanophyta 📕 Chlorophyta 📕 Chrysophyta 🖀 Cryptophyta 🔳 Euglenophyta 📕 Pyrrhophyta 🔳 Rhodophyta 🔳 Undetermined

Figure 71. Phytoplankton Density (cells/ml) at Station LL3, May-October 2016

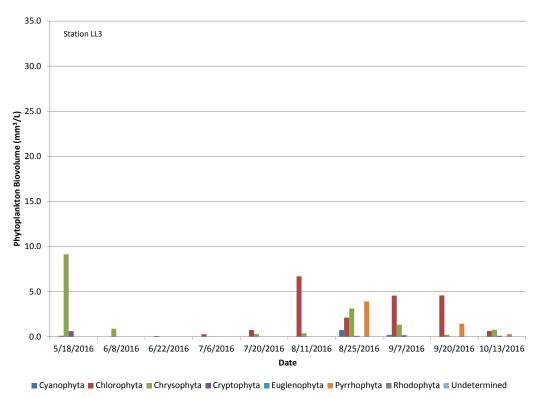
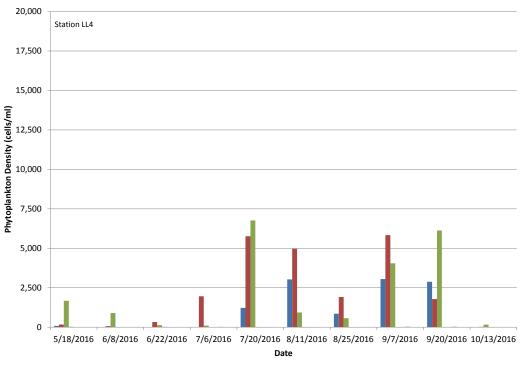
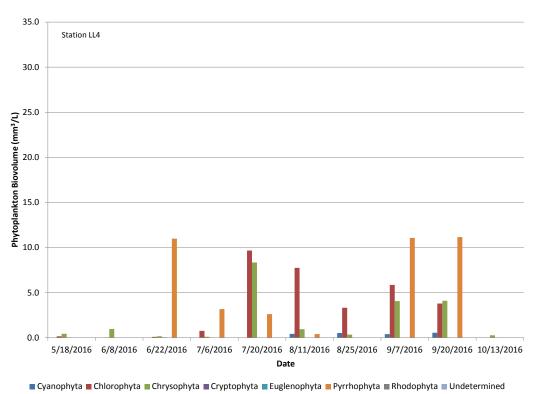
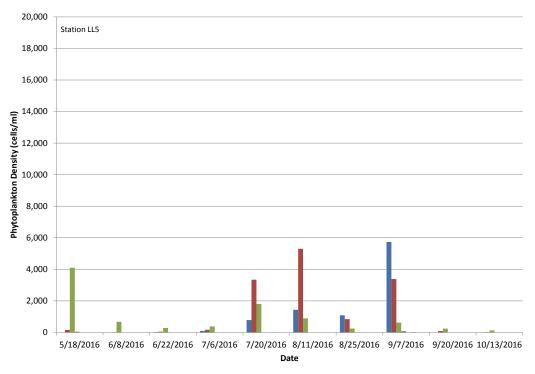
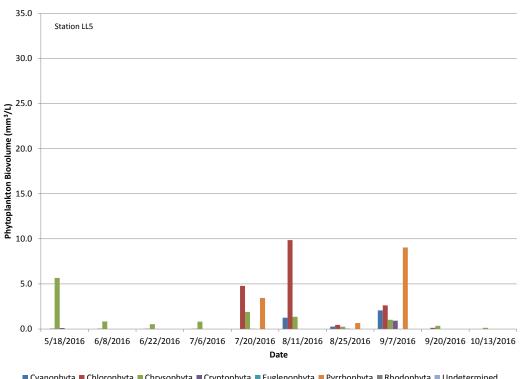



Figure 72. Phytoplankton Volume (mm³/L) at Station <u>LL3</u>, May-October 2016

🛛 Cyanophyta 🗶 Chlorophyta 🖉 Chrysophyta 🗮 Cryptophyta 🗮 Euglenophyta 💻 Pyrrhophyta 🔳 Rhodophyta 🔳 Undetermined

Figure 73. Phytoplankton Density (cells/ml) at Station LL4, May-October 2016


Figure 74. Phytoplankton Volume (mm³/L) at Station <u>LL4</u>, May-October 2016

Cyanophyta 🖬 Chlorophyta 🖀 Chrysophyta 🖀 Cryptophyta 🖀 Euglenophyta 🖷 Pyrrhophyta 🕷 Rhodophyta 🕷 Undetermined

Figure 75. Phytoplankton Density (cells/ml) at Station LL5, May-October 2016

Cyanophyta Chlorophyta Chrysophyta Cryptophyta Euglenophyta Pyrrhophyta Rhodophyta Undetermined

Figure 76. Phytoplankton Volume (mm³/L) at Station LL5, May-October 2016

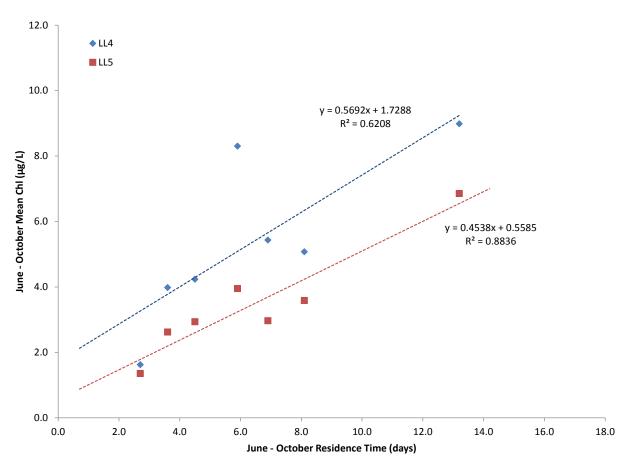
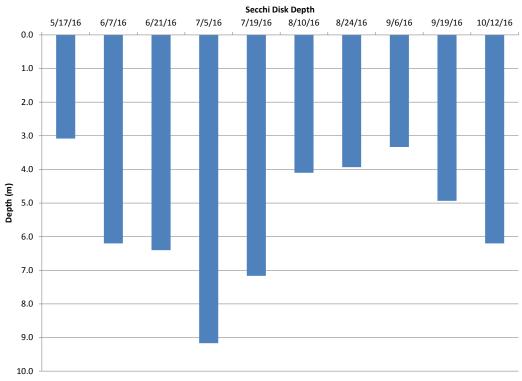
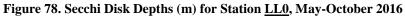
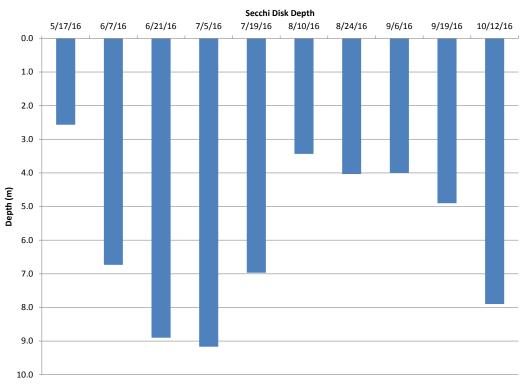
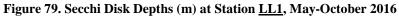


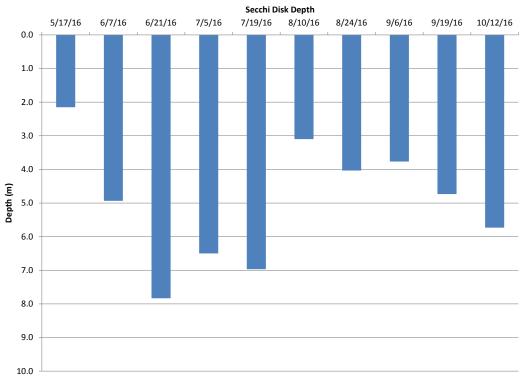
Figure 77. Transition/Riverine Residence Time vs Chl in Lake Spokane, 2010 – 2016.

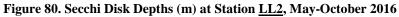

3.2.7 TRANSPARENCY (SECCHI DISK DEPTH)

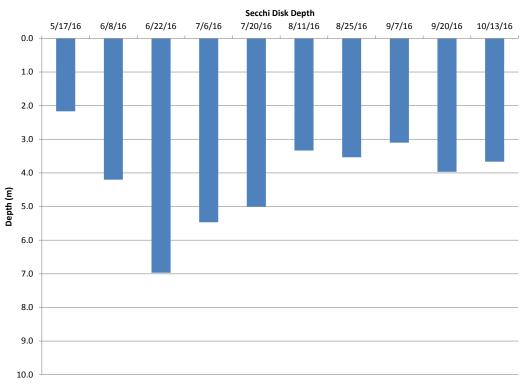

Transparency ranged from 2.2 to 9.2 m throughout the reservoir during 2016 (Figures 78 through 83). The maximums occurred at different times (mainly late June and early July), depending on the station, but were coincident with low chl concentrations (algae absorb and scatter light). The minimums for most stations were in May when inflow was highest and light attenuation was affected by non-algal particulate matter. Transparency at the deeper stations in May also appear to have been influenced by the spring phytoplankton bloom. Minimums occurred at LL4 during a phytoplankton bloom in August and early September. There were lower transparencies at the other stations during this time as well. Transparency was determined largely by phytoplankton abundance (chl) throughout the reservoir, except during May at Station LL5.

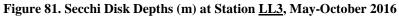

As is the case for most reservoirs with relatively large inflows carrying non-algal suspended matter, transparency increased down-reservoir with greatest transparency occurring in the lacustrine zone. Much of that trend was likely due to longer water retention time that prompts a greater loss of particulate matter through settling, as well as plunging inflows that tend to isolate the lacustrine epilimnion allowing even more settling time from the upper layer.

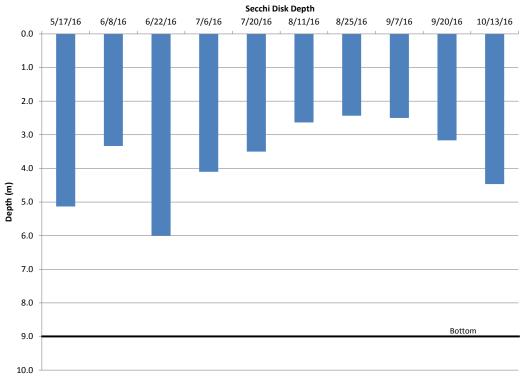

Whole-reservoir, area-weighted mean transparency during June – October of 2010-2016 was 4.8 \pm 0.35 m. In contrast, mean transparency during that period in 1971-1977, before phosphorus reduction, was 2.4 \pm 0.44 m, and after reduction, 3.3 \pm 0.39 m.

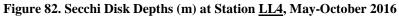


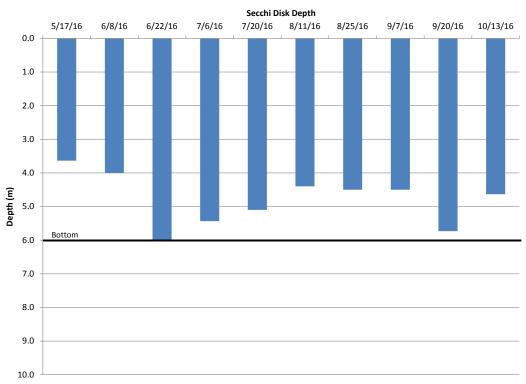












3.2.8 ZOOPLANKTON

Rotifers and Nauplii usually dominated the zooplankton density (numerical abundance) at most stations in 2016 (Figures 84 through 95). Rotifers were more abundant in May and then again later in August and September, especially in the upper reservoir. However, those animals are relatively small and did not dominate biomass. This pattern is similar to the zooplankton community in 2015, although nauplii were more abundant during the summer and into the fall. Similar to Rotifers, Nauplii did not dominate biomass at any stations during 2016. Rotifer densities were usually higher in spring at the deeper sites, but were greatest at LL3 – LL5 in late summer and fall. This was also the case in 2013 - 2015. That may be due to rotifers being detritus and bacteria feeders; abundance of such organic particles may occur at high concentrations in the upper hypolimnion and lower metalimnion and account for high densities despite the dilution effect of deep net hauls. Rotifer densities were higher at LL4 and LL5 in August and September (21 to 126 #/L) than at any other stations. The rotifer densities were higher at LL4 and LL5 in 2015 during the same time period (75 to 178 #/L). Rotifer density, as well as other zooplankton species, declined dramatically at station LL5 in late September and October, 2016, although densities remained relatively high at LL4 in late September. The decline at LL5 corresponded to destratification of the water column and a decrease in water residence time with the start of higher inflows.

Cladocerans (*Cladocera*) are the largest zooplankters and they dominated biomass at all stations for most of 2016. *Calanoid* copepods were relatively unimportant in contrast to natural lakes in which they usually dominate in the spring. *Calanoid* copepod biomass was high during the summer and into fall at LL4, but declined at LL5 with increased inflow and reduced retention time, similar to 2015. Density and biomass of cladocerans, as well as other groups, were probably artificially reduced at the deeper lacustrine stations because they were sampled by net hauls from approximately 1 m off the reservoir bottom to the surface. Large mobile zooplankton are much less likely to occur in the hypolimnion where food particles, especially phytoplankton, are scarce. That was especially apparent at LL4 and LL5 with very high maximum densities of 10-30/L and much lower densities at LL0 – LL3 with net hauls of 19-47 m. Biomass of cladocerans ranged from 16 to 146 μ g/L at LL4 – LL5 during July through September 2016.

Multiplying concentrations by net haul depth, which results in density and biomass per surface area, tends to even out the station differences (Tables 10 - 14). Depth-corrected average seasonal cladoceran concentrations were still higher at LL4 than other sites in 2016 ($56 \times 10^3/m^2$; Table 10), while concentrations at LL5 were the lowest ($11 \times 10^3/m^2$; Table 10), although LL5 had the second highest mean density of cladoceran without correcting for depth. Depth-corrected average seasonal cladoceran concentrations in 2016 were lower than in any previous year (Tables 10 - 14). Thus, part of the reason for low cladoceran density and biomass at deep sites is likely a dilution effect with greater net haul depths.

Cladoceran densities and biomass varied among upper reservoir sites (LL4 – LL5) over the past five years. Densities were highest in 2013, averaging 26 and 56/L and over $200 \times 10^3/m^2$, but were much lower in other years, usually around 10/L or less (Tables 10 - 14). Mean densities at LL4 – LL5, corrected for net-haul depth (no/m²), were also much lower in 2012, 2014, 2015, and 2016 than in 2013. Season (June-October) average water residence times may explain some of the

differences in density among the years; 2012 and 2014 with less density had shorter residence times, at 3.6 and 5.9 days, than 2013 (6.9 days) when densities were highest, although the difference of only 1 day between 2013 and 2014 was probably not significant. Also, water residence times in 2015 and 2016 were the longest out of all years, mean density at LL4 was actually lower than in 2013 ($206 \times 10^3/m^2$), than in 2015 and 2016 (73 and $103 \times 10^3/m^2$). The lowest mean areal density of any of the five years and sites occurred at LL5 in 2016 with an average residence time of 8.1 days. Thus, water residence time is definitely an important factor to both phytoplankton and zooplankton abundance, and even more so for zooplankton, due to their slower growth rate. However, average seasonal residence time is probably not always a good indicator in the upper reservoir due to variability in hydraulic conditions. For example, all zooplankton populations were thriving well at LL5 during most of the dry, low inflow summer, but were greatly depleted in late September and October when inflows increased.

Cladoceran density was significantly less at all stations in 2016 and similar to those in 2012 and 2015 compared to the high densities in 2013 (Tables 10 - 14). The highest summer mean cladoceran areal density observed in 2016 was at station LL4 with nearly 56 x10³/m², which was half that in 2015. Mean density was over 254 x10³/m² at station LL0 in 2013, over 11 times that in 2016, nearly 7 times that in 2015, and 5 times that in 2014. The largest difference among sites and years was at station LL5 where density in 2012 was slightly over 13 x10³/m² versus nearly 281 x10³/m² in 2013 (Tables 11 and 12). In 2015, density at the riverine site was second highest of the five years at 51 x10³/m² (Table 14) but in 2016 cladoceran density at LL5 was the lowest of all years (11,064/m²).

Cladocerans (including *Daphnia*) also had the largest biomasses during summer at all sites, with maximums reaching 146 μ g/L at LL5 in 2016, which is slightly less than the maximum of 184 μ g/L in 2015 at LL4. Maximum biomass was 150 μ g/L, or more at LL3 and LL4 in 2014. These maximums were lower than in 2013 with biomass well over 200 μ g/L at LL4 and LL5. In August 2012, biomass maximums averaged only about 80 μ g/L. Variability in cladoceran abundance was large from year-to-year. The reason for this variability is unclear, but such is not unusual with dynamic plankton populations responding to sometimes rapidly changing environmental conditions.

Because of their large size, cladocerans are usually the most important grazers, with *Daphnia* being the largest and most efficient. *Daphnia* size at LL4 has ranged from 0.7 to 2.8 mm, but usually between 1.0 to 2.1 mm. At that large size, they are the favorite food for visually-feeding, planktivorous fish. However, *Daphnia* usually had "helmets" throughout the summer in 2014, as well as 2012 and 2013. Helmets usually indicate low predation. Whether *Daphnia* had helmets in 2015 or 2016 is unknown, due to a change in laboratory and counting procedures/reporting. The presence of helmets may not be due to fish predation in this case, because a large number of catchable size trout were stocked in the reservoir beginning in June of 2014 (155,000) as well as in May of 2015 (155,000), with no such intensive stocking in 2012 or 2013 when *Daphnia* were helmeted. Although temperatures in the top 5 m were above optimum for trout during July-August, suitable temperatures for fish predation existed below that depth.

The trophic state of a lake or reservoir can be judged by the amount of zooplankton consumer production relative to that of phytoplankton production. The transfer of food energy from one trophic level (producers) to the next (zooplankton consumers) is nominally 10%. That is, 10% of carbon produced reaches the next trophic level, so the transfer is 10% efficient. If biomass turnover rate were the same at each trophic level, then the ratio of zooplankton dry biomass to phytoplankton dry biomass would be one tenth, assuming all phytoplankton are edible and all zooplankton are eating algae. However, productivity, or turnover rate, of producer levels is usually greater than at consumer levels.

Neverless, cladocerans are large and usually the major consumers, and have averaged 67% of total zooplankton biomass over the past five years. Over 90% of cladocerans have been *Daphnia*, which can have very high growth rates and are capable of consuming all the edible algae produced per day under ideal conditions (Welch and Jacoby 2004). Cyanobacteria are largely inedible, but their maximum percent of the phytoplankton biomass averaged only 4.7 and 3.0 in 2012 and 2013, but increased to 37% in 2014 and decreased again in 2015 at 14% and again in 2016 at 7.4%.

The zooplankton:phytoplankton biomass (dry-weight) ratio in a 15 m water column was determined by converting phytoplankton biovolume to dry weight, assuming cells are 85% water. That ratio ranged from a three-year (2012 - 2014) per site average of 0.3 to 0.59, with an overall mean of 0.44, which would indicate nearly half the phytoplankton were apparently being consumed, assuming biomass turnover rates were the same for each trophic level. In 2015, the average ratio was dramatically lower than in 2012 - 2014, ranging from 0.03 to 0.17. The ratio in 2016 ranged from 0.13 to 0.40. The lower ratios in 2015 and 2016 were likely due to higher reported phytoplankton biovolumes, because of different average cell biovolumes used by the two laboratories (WATER Environmental Services and EcoAnalysts, Inc.), rather than to a large biovolume of inedible cyanobacteria. That is supported by the relatively low contribution from cyanobacteria to overall biovolume throughout the period (see Table 9).

Station	Net Haul Depth (m)	No./L	No./m ³	No./m ² x10 ³
LLO	47	0.47	475	22
LL1	33	1.15	1,152	38
LL2	25	1.43	1,426	35
LL3	19	1.90	1,897	36
LL4	8	7.05	7,051	56
LL5	5	2.21	2,213	11

 Table 10. Summer Mean Density of Cladocera at the Six Stations in 2016 Corrected for Depth of Net Haul to Aerial Units

 Table 11. Summer Mean Density of Cladocera at the Six Stations in 2012 Corrected for Depth of Net Haul to Aerial Units

Station	Net Haul Depth (m)	No./L	No./m³	No./m ² x10 ³
LLO	48	1.70	1,702	81
LL1	33	1.14	1,143	37

LL2	25	1.86	1,861	46
LL3	18	2.98	2,984	53
LL4	8	9.97	9,967	79
LL5	5	6.22	6,223	31

Table 12. Summer Mean Density of <i>Cladocera</i> at the Six Stations in 2013 Corrected for Depth of Net	
Haul to Aerial Units	

Station	Net Haul Depth (m)	No./L	No./m³	No./m ² x10 ³
LLO	47	5.41	5,413	254
LL1	33	4.14	4,136	136
LL2	25	4.33	4,331	108
LL3	18	5.09	5,085	91
LL4	8	25.7	25,726	205
LL5	5	56.2	56,154	280

Table 13. Summer Mean Density of <i>Cladocera</i> at the Six Stations in 2014 Corrected for Depth of Ne	t
Haul to Aerial Units	

Station	Net Haul Depth (m)	No./L	No./m³	No./m ² x10 ³
LLO	47	1.21	1,210	56
LL1	33	2.39	2,393	78
LL2	25	2.87	2,869	71
LL3	19	6.17	6,166	117
LL4	8	9.19	9,187	73
LL5	5	2.63	2,629	13

 Table 14. Summer Mean Density of Cladocera at the Six Stations in 2015 Corrected for Depth of Net Haul to Aerial Units

Station	Net Haul Depth (m)	No./L	No./m³	No./m ² x10 ³
LLO	47.5	0.78	781	37
LL1	33	1.00	1003	33
LL2	25	1.30	1301	32
LL3	19	3.54	3544	67
LL4	8	12.98	12977	103
LL5	5	10.31	10313	51

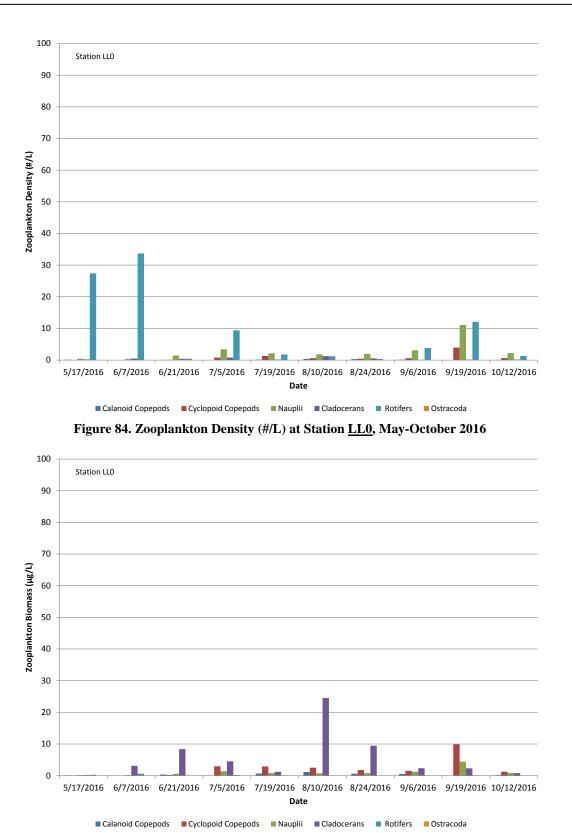
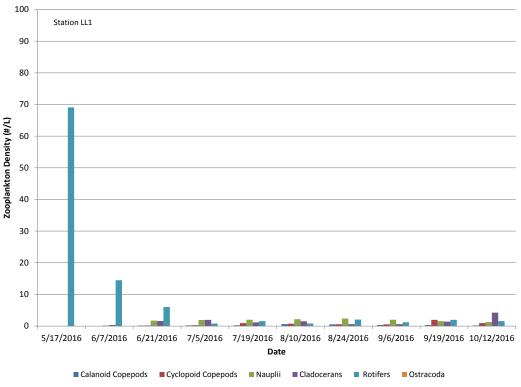
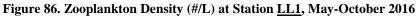




Figure 85. Zooplankton Biomass (µg/L) at Station <u>LL0</u>, May-October 2016

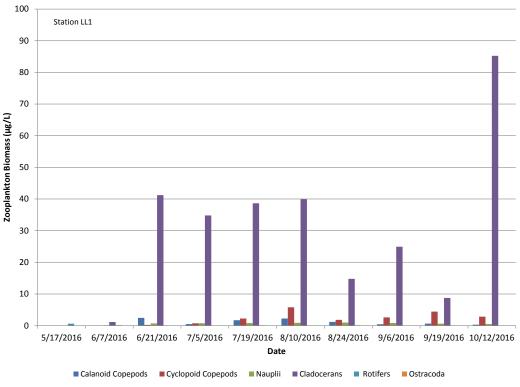


Figure 87. Zooplankton Biomass (µg/L) at Station LL1, May-October 2016

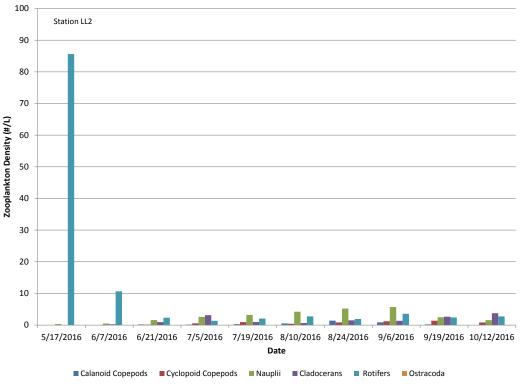


Figure 88. Zooplankton Density (#/L) at Station LL2, May-October 2016

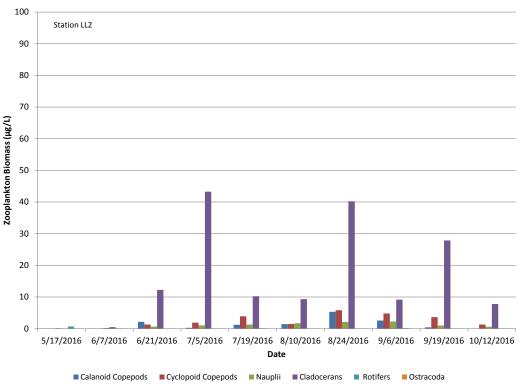


Figure 89. Zooplankton Biomass (µg/L) at Station LL2, May-October 2016

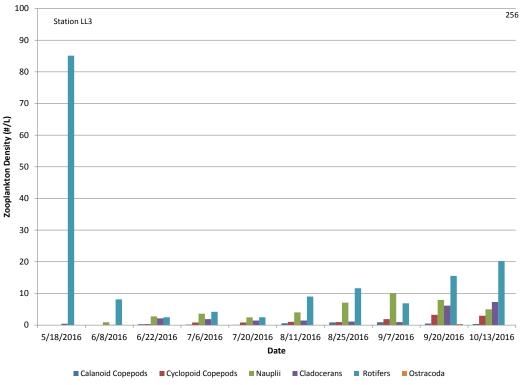


Figure 90. Zooplankton Density (#/L) at Station LL3, May-October 2016

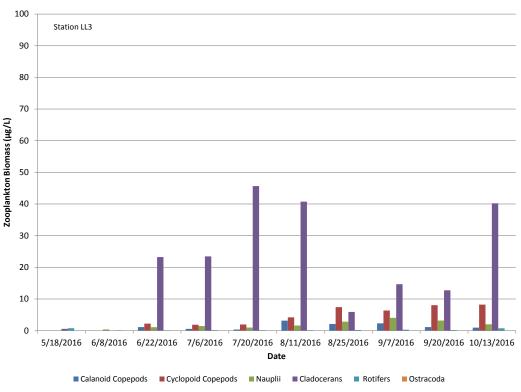


Figure 91. Zooplankton Biomass (µg/L) at Station LL3, May-October 2016

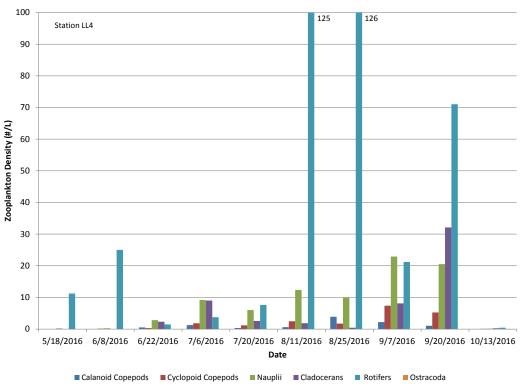


Figure 92. Zooplankton Density (#/L) at Station LL4, May-October 2016

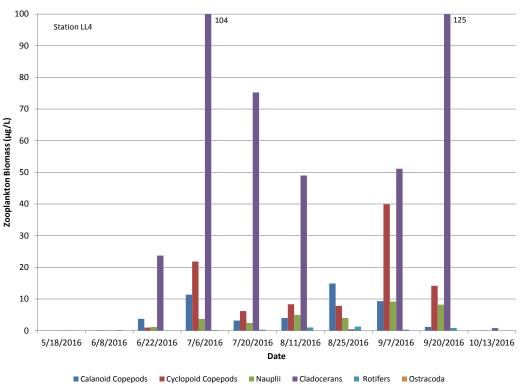


Figure 93. Zooplankton Biomass (µg/L) at Station <u>LL4</u>, May-October 2016

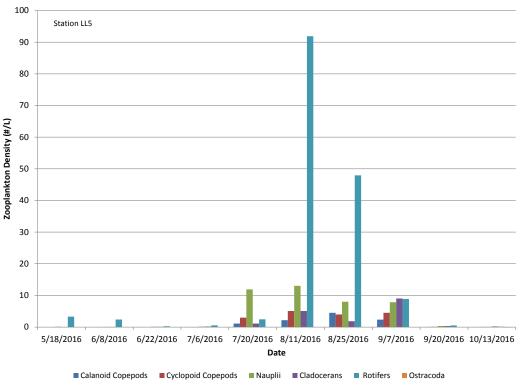


Figure 94. Zooplankton Density (#/L) at Station LL5, May-October 2016

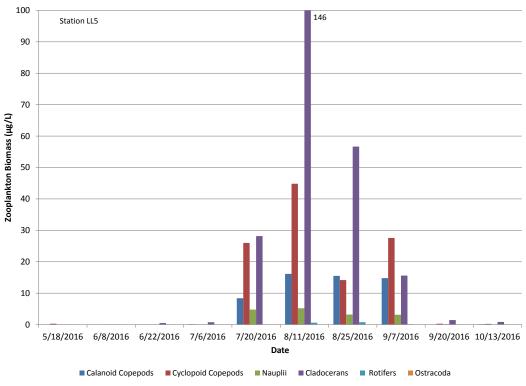


Figure 95. Zooplankton Biomass (µg/L) at Station LL5, May-October 2016

3.2.9 SPOKANE RIVER AT NINE MILE BRIDGE AND LITTLE SPOKANE RIVER NEAR MOUTH

Ecology monitored water quality in the Spokane River and Little Spokane River a short distance upstream of its confluence with Lake Spokane. The Spokane River at Nine Mile Bridge station, (54A090) is located approximately 0.1 mile downstream of Nine Mile Dam at River Mile (RM) 58. According to Ecology's River and Stream Water Quality Monitoring website, this station is a "basin" station with data collected during 2016 (January – December data are presented in this report). Sampling at this station was conducted by Ecology in accordance with the Stream Ambient Monitoring QAPP.

Water quality data available for the Spokane River at Nine Mile Bridge for 2016 are summarized below in Tables 15 and 16. The data are preliminary and have not been finalized by Ecology. Shaded values indicate exceedance of water quality standards or represent a strong contrast with historical results, according to Ecology's website.

Date	Temperature (°C)	Dissolved Oxygen (mg/L)	рН	Conductivity (μmhos/cm)
1/5/2016	4.9	10.6	7.36	131
2/2/2016	4.6	12.3	7.19	92
3/8/2016	5.2	13.2		75
4/5/2016	7.3	12.9	7.42	81
5/3/2016	15.6	10.4	7.95	104
6/7/2016	18.5	9.2	8.02	109
7/19/2016	16.3	9.4	8.36	226
8/9/2016	15.2		8.33	280
9/13/2016	13.8	10.9	8.45	255

Table 15. Water	Ouality Data from	the Spokane River at	Nine Mile Bridge during 2016.

Note: Shaded values indicate an exceedance of water quality standards or strong contrast to historical results.

	1		1		
Date	Total Phosphorus (µg/L)	Soluble Reactive Phosphorus (µg/L)	Total Reactive Phosphorus (µg/L)	Total Nitrogen (μg/L)	NO₃+NO₂ (µg/L)
1/5/2016	11.2	5.7	5.9	803	756
2/2/2016	19	9.3	11.3	841	755
3/8/2016	25.5	13.6	18.4	560	497
4/5/2016	14.2	4.5	4.9	471	387
5/3/2016	14.7	3.5	3.6	484	322
6/7/2016	11.3	4.3	4.3	571	454
7/19/2016	12.8	6.2	6.8	1,670	1,670
8/9/2016	10.9	7.8		2,200	2,120
9/13/2016	9.2	5.7		1,740	1,630

Table 16. Conventional Water Quality Data from the Spokane River at Nine Mile Bridge during2016.

Note: Shaded values indicate an exceedance of water quality standards or strong contrast to historical results.

The Little Spokane River station is near its mouth (55B070), which is located at RM 1.1 and is a long-term site, according to the Ecology website. Sampling at this station was conducted by Ecology in accordance with the Stream Ambient Monitoring QAPP.

Water quality data for the Little Spokane River for 2016 are summarized below in Tables 17 and 18. The data are preliminary and have not been finalized by Ecology. Shaded values indicate exceedance of water quality standards or a strong contrast with historical results, according to Ecology's website.

Date	Temperature (°C)	Dissolved Oxygen (mg/L) pH		Conductivity (µmhos/cm)
1/5/2016	5.7	11.3	7.98	255
2/2/2016	5.1	10.4	7.54	212
3/8/2016	7.2	10.0		183
4/5/2016	10.3	9.6	7.72	190
5/3/2016	14.4	9.0	8.22	245
6/7/2016	17.5	9.7	8.46	264
7/19/2016	14	9.8	8.37	275
8/9/2016	13.5	9.6	8.29	2863
9/13/2016	12.1	10.1	8.36	291
10/4/2016	10.3	10.0	8.25	288
11/15/16	9.8	9.8	8.17	265

 Table 17. Water Quality Data from the Little Spokane River near Mouth during 2016.

Note: Shaded values indicate an exceedance of water quality standards or strong contrast to historical results.

Date	Total Phosphorus (μg/L)	Soluble Reactive Phosphorus (µg/L)	Total Reactive Phosphorus (µg/L)	Total Nitrogen (μg/L)	NO₃+NO₂ (µg/L)
1/5/2016	18.3	12.4	13.5	1,300	1,260
2/2/2016	39.7	26.2	26.4	1,150	973
3/8/2016	44.8	23.4	23.5	786	635
4/5/2016	41.3	20.1	22.8	844	671
5/3/2016	29.2	3.0	15.4	971	753
6/7/2016	16.9	7.5	7.8	1,090	909
7/19/2016	12.1	5.9	6.2	1,150	1,080
8/9/2016	8.9	6.5		1,180	1,110
9/13/2016	9.5	8.0		1,300	1,230
10/4/2016	11.8	7.4		1,220	1,160
11/15/16	17.5	12.0		1,130	1,160

Table 18. Conventional Water Quality data from the Little Spokane River near Mouth during 2016.

Note: Shaded values indicate an exceedance of water quality standards or strong contrast to historical results.

Total N and nitrate+nitrite-N are high in both the Spokane and Little Spokane Rivers in late summer. That range in concentration of 1,040 to 2,470 TN, with most being nitrate+nitrite, about equals the range in the metalimnion and hypolimnion of the lacustrine zone of Lake Spokane. This suggests that plunging river inflows due to density were the source of the high summer N concentrations in the reservoir, with groundwater also being an important contributor.

3.2.10 SPOKANE RIVER DOWNSTREAM OF LONG LAKE DAM

This site is also a "basin" station with data collected during October 2009 through September 2010 (Water Year 2010); however, Ecology did not conduct monitoring during 2016.

3.2.11 DO – TEMPERATURE RELATED FISH HABITAT

The following section provides a cursory review of fish habitat in Lake Spokane and how it might be affected by DO and temperature conditions, based upon select literature sources, as well as the data collected at the six lake stations. This section assesses available, cold-water fish habitat in Lake Spokane in 2016 based on DO and temperature criteria and data from the six lake stations. To obtain site specific water quality limitations on fish habitat in Lake Spokane, a more thorough analysis would need to be completed. With six sites, one can assume that conditions throughout the reservoir are represented, at least as far as DO/temperature are concerned and the criteria represent requirements of the local fish.

Fish can be "squeezed" in summer between epilimnetic water that is too warm and deeper layers that are sufficiently cool but with DO that is too low. The threat to cold water species (i.e., trout) can be assessed by determining the depth intervals with temperature and DO that are within the optimum ranges for growth. For rainbow trout, based upon USFWS (1984), the maximum of the optimum temperature range for growth is 18°C and the minimum for the DO range is 6 mg/L. Their preferred temperature is 14°C (Welch and Jacoby 2004). The minimum DO required is usually cited as 5 mg/L, recognizing that higher DO levels also occur (EPA 1986; USFWS 1984).

Using the USFWS criteria, trout probably would have avoided the epilimnion during most of the summer due to temperature that reached 23°C and preferred to seek cooler water deeper than 10 m (Figures 8 to 11). Between 10 and 20 m, DO was usually near or above 6 mg/L during most of the summer at the four deepest stations (LL0, LL1, LL2, and LL3). In late August and September at LL0, DO dropped to near or below the often cited required minimum of 5 mg/L between 10 and 20 m and was even lower at deeper depths (Figure 20). However, at the other deep stations DO remained above 5 mg/L providing refuge during late summer (Figures 21 to 23). These data suggest that rainbow trout are most likely inhabiting cooler water in the metalimnion and upper portions of the hypolimnion where DO is adequate.

The percent of the reservoir volume acceptable for growth were computed for rainbow trout at the six stations for 2016, using the critical maximum temperature (18°C) and minimum DO (6.0 mg/L) (Figures 96-101). Habitat volumes for temperature and DO together, as well as separately, are shown to indicate which factor was most limiting.

Trout were limited earlier in the summer at the deeper stations by temperature and then more so by DO concentrations as the summer progressed in 2016 (Figures 96-98). Trout were limited exclusively by temperature at the shallower stations (Figures 99-101). This was similar to the previous year, with the exception of station LL3, which during 2015 showed a slight limitation by DO in early summer. Total volume of acceptable habitat in 2016 at the deeper stations was larger than that in 2015, most likely due to the lower inflow, longer residence time, and slightly warmer water temperature which occurred in 2015.

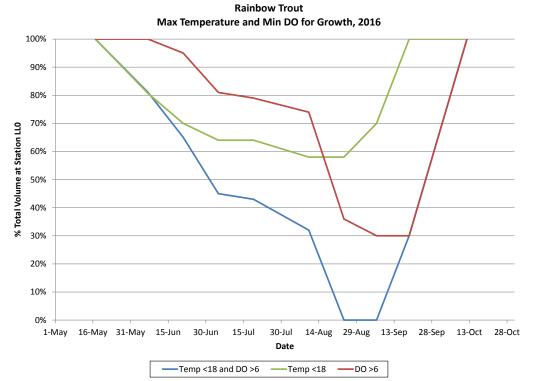


Figure 96. Habitat Conditions at Station <u>LL0</u> for Rainbow Trout in 2016, Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

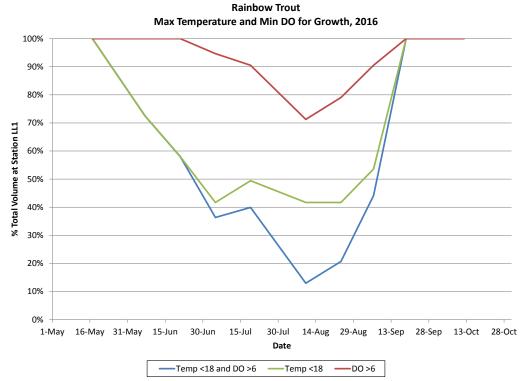


Figure 97. Habitat Conditions at Station <u>LL1</u> for Rainbow Trout in 2016, Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

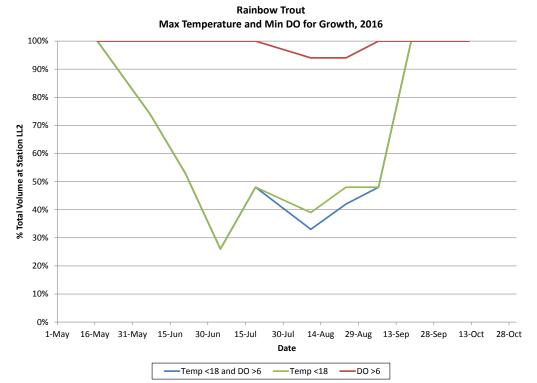


Figure 98. Habitat Conditions at Station <u>LL2</u> for Rainbow Trout in 2016, Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

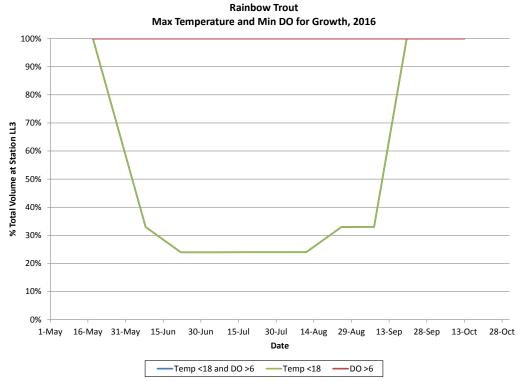


Figure 99. Habitat Conditions at Station <u>LL3</u> for Rainbow Trout in 2016, Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

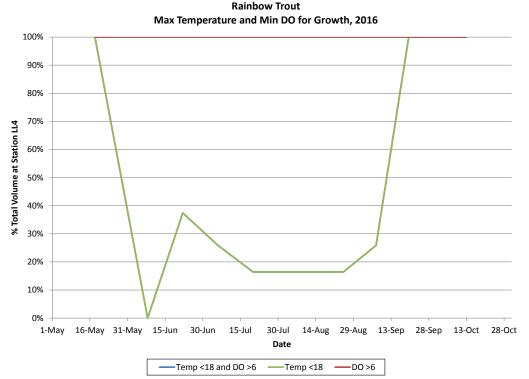


Figure 100. Habitat Conditions at Station <u>LL4</u> for Rainbow Trout in 2016, Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

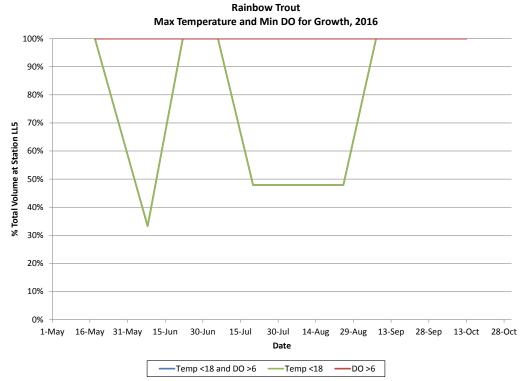


Figure 101. Habitat Conditions at Station LL5 for Rainbow Trout in 2016 Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

3.3 2016 Quality Assurance

Quality assurance review of field and laboratory data was conducted in accordance with the guidelines and requirements outlined in the *Quality Assurance Project Plan for Lake Spokane Baseline Nutrient Monitoring* (QAPP). Replicate field measurements and laboratory samples as well as field blanks were compared to the measurement quality objectives (MQOs) as stated in the QAPP. If data warranted qualification based on the guidelines in the QAPP, qualifiers such as "J – result is considered an estimate", were assigned to the associated data in the database prepared for Ecology's Environmental Information Management (EIM) along with a comment describing why the data needed qualification.

In 2016 all parent and replicate field measurements met QAPP guidelines for relative percent difference (RPD). Therefore there were no data qualification necessary within the EIM database.

Within the database prepared for EIM, laboratory data was qualified using the following qualifiers; "U, for non-detect", "J, for result is an estimate", or "R, for result is rejected". For 2016, there were 2 TP and 2 SRP samples, which were qualified within the database as "J, estimates". These nutrient samples were qualified within the database as estimates due to field replicate RPDs being outside the acceptable criteria stated in the QAPP. However, the parent sample results for these qualified samples were used in the data analysis since the results were within the expected range of concentrations and in line with other sample results at surrounding depths. In 2016, there was also one TN and nitrate+nitrite-N sample that was qualified within the database as "J, estimates". This qualification was due to the concentration of nitrate+nitrite-N being higher than TN. The data was still used for data analysis since the results were within \pm 20% of each other. One TP sample was rejected in the database in 2016. This sample collected on 6/22/2016 at station LL4 at 4 m and had significant higher TP than the replicate sample also collected at that location and depth. The replicate sample TP was much more in line with both upstream and downstream concentrations as well as the two other samples collected at LL4 on that date. Due to this, the parent TP sample was rejected and not used for data analysis and the replicate sample used in its place.

During the 2016 monitoring period, several field blank samples had TN concentrations over the detection limit (4 samples) and TP concentrations over the detection limit (2 samples). The field blank samples were collected using laboratory provided de-ionized water. The concentration of TN found in the field blank samples was just slightly over the method detection limit (MDL) and significantly lower than the TN concentrations found in the reservoir samples. The concentration of TP found in the May field blank sample was 9 μ g/L which is significantly higher than the MDL of 2 μ g/L. The TP concentration in the late June field blank was just slightly over the MDL at 3 μ g/L. After discussion with the lab and running multiple field blanks and straight de-ionized water samples, it was thought that the de-ionized water provided by the laboratory may have picked up trace amounts of nitrogen and phosphorus from their respective bottles after shipment, especially since most of the detections occurred during the second sampling event of the month when the bottles of de-ionized water would have been sitting for several weeks. One sample of just de-ionized water had a slight hit for TN just over the MDL (53 vs 50 μ g/L). Another explanation for the field blank detections could have been due to incomplete rinsing of the Van Dorn sampling bottle prior to collection of the field blank. Although field staff thoroughly rinse the Van Dorn

bottle with de-ionized water from Culligan both in between stations and prior to collecting the field blank, small particles/algal cells could have remained along the seal of the bottle and contaminated the field blank sample. Reservoir samples would not have been contaminated in this fashion since the Van Dorn bottle is fully open on both sides when it is lowered into the water column, thereby providing a complete rinse of the apparatus. No reservoir TP data were qualified based on the detection of TP in the field blanks due to the reasons stated above. No reservoir TN data were qualified based on the detection of TN in the field blank due to the magnitude difference between the reservoir sample TN concentrations and the very low amount of TN detected in the field blank.

(This Page Intentionally Left Blank)

4. ASSESSMENT OF WATER QUALITY IN LAKE SPOKANE (2010 – 2016)

4.1 Temperature

Given reservoirs retain heat from the atmosphere, both water and air temperatures were analyzed to evaluate trends in temperature. Air temperature in the Pacific NW has increased over the past several decades. Air temperature during 1952 - 1965 was similar to 1972 - 1985, but increased slightly during 2010 - 2016, by 1°C, on average for June – October (Table 19). Surface water temperatures, especially in reservoirs should have increased also. Not surprisingly, the available data indicate that surface temperatures in Lake Spokane have increased slightly more than 1°C since the 1970s - 1980s. Average temperature with depth throughout the reservoir during June – October are shown for 2010 - 2016, compared with those from Patmont during 1972 - 1985 (1987; Figures 102 and 103). Note that there is only a small area that averaged greater than 19° C during 1972 - 1985, but the 20° C isopleth encompassed nearly the whole reservoir surface during 2010 - 2016. Also, mean lacustrine temperature in the top 5 m, determined from numerical data, averaged 19.8° C during 2010 - 2016, and 20.2° C at the surface – about 1° C warmer than in 1972 - 1985 (Table 20).

 Table 19. Average annual and June – October Air Temperature at Spokane International Airport.

Time Period	Annual Average (°C)	June – October Average (°C)		
1952 - 1965	8.6 (±0.9)	16.4 (±1.0)		
1972 - 1985	8.3 (±0.6)	16.1 (±0.6)		
2010 - 2016	9.0 (±1.0)	17.1 (±1.0)		

Table 20. June – October Average Water Temperatures in Lacustrine Zone of Lake Spokane, 2010- 2016.

	LLO		LL1			LL2			
Year	Surface	Epi (0-5 m)	Hypo (15 m+)	Surface	Epi (0-5 m)	Hypo (15 m+)	Surface	Epi (0-5 m)	Hypo (15 m+)
2010	19.1	18.7	14.9	19.3	18.9	15.3	19.4	19.0	15.5
2011	18.7	18.2	14.8	19.6	19.1	15.8	19.8	19.1	15.7
2012	19.9	19.4	14.7	20.0	19.7	15.3	20.0	19.5	15.8
2013	20.3	20.0	14.6	21.0	20.6	15.5	21.3	20.8	15.6
2014	20.8	20.3	15.3	21.2	20.8	15.9	21.4	20.8	16.2
2015	20.8	20.5	12.5	21.2	20.9	14.5	21.3	21.1	15.5
2016	19.7	19.4	14.8	20.3	19.8	15.6	20.4	20.0	15.8
Mean	19.9	19.5	14.5	20.4	20.0	15.4	20.5	20.0	15.7
STDEV	0.8	0.8	0.9	0.8	0.8	0.5	0.8	0.8	0.2

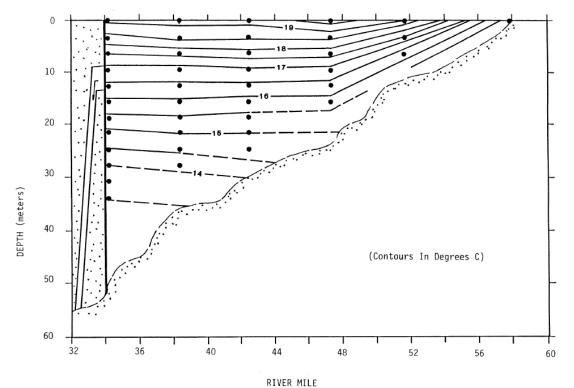


Figure 102. Average June – October temperature contours in Lake Spokane, 1972 – 1985 (Patmont 1987).

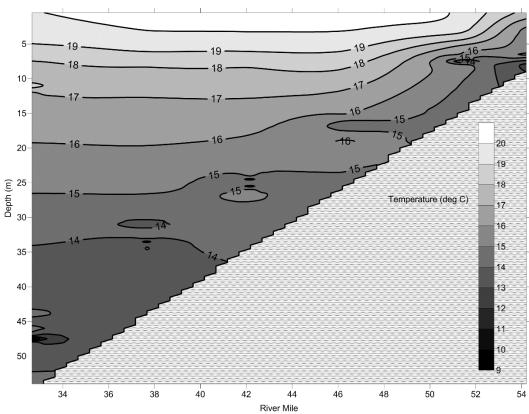


Figure 103. Average June – October temperature contours in Lake Spokane, 2010 – 2016.

4.2 Dissolved Oxygen

The past seven years of DO data have consistently shown that the reservoir's DO resource has improved in response to reduced inflow TP. The DO has steadily improved from the reservoir's hypereutrophic state since 85% of point source effluent TP was removed in 1977 (Welch et al. 2015). The dependence of minimum hypolimnetic DO on TP is shown in Figure 105, which was modified from Patmont (1987). During 1972 to 1977, minimum volume-weighted hypolimnetic DO (below 15 m) ranged from 0.2 to 3.4 mg/L, with a mean of 1.4 mg/L. After phosphorus reduction, minimum volume-weighted hypolimnetic DO gradually increased to a mean of 2.5 mg/L during 1978 to 1981, and then to 4.5 mg/L during 1982 to 1985, as inflow TP declined from 85 to 25 μ g/L (Patmont 1987). Almost three generations later, minimum volume-weighted hypolimnetic DO (calculated using Patmont 1987 volumes and DO data from the lacustrine zone) averaged 6.2 mg/L during 2010 to 2016 at inflow TPs averaging 14.7 μ g/L (riverine zone, volume weighted TP concentration at LL5) during the same period. While the long-term progression is evident there has been variation in minimum DO during the past seven years Figure 104).

The year-to-year variability in minimum DO in Figure 104 was likely due to water inflow and residence time, with higher inflows (shorter residence times) producing higher DO minimums in the 1970s through 1980s (Patmont 1987). Specifically, the high minimum volume-weighted hypolimnetic DOs in 1974 – 1975 had the highest June – October inflows during 1960 to 1985. Nevertheless, the principal control on minimum volume-weighted hypolimnetic DO over the large range in inflow TP, from immediately before to after phosphorus reduction, was inflow TP (Figure 104), with a lesser effect from residence time (Figure 105). However, over the past seven years, with consistently low inflow TP, minimum volume-weighted hypolimnetic DO appears to be more dependent on residence time. Minimum volume-weighted hypolimnetic DO during 2010-2016 ranged from 5.1 mg/L to nearly 8 mg/L, while summer volume-weighted riverine TP (surrogate for flow-weighted inflow TP) ranged from 11.4 to 20 µg/L, and the two variables now appear to be independent of each other ($r^2 = 0.31$). Instead, it appears minimum hypolimnetic DO was more related to June-October water residence time ($r^2 = 0.85$). Residence times ranged from about 24 to 70 days during 2010, 2013, 2014, 2015, and 2016 corresponding with the lowest minimum volume-weighted hypolimnetic DOs, while residence times of about 14 to 19 days in 2011 and 2012 were associated with the highest minimum hypolimnetic DOs (Figures 104 and 105). However, the lowest minimum volume-weighted hypolimnetic DO during recent years was 5.1 mg/L which occurred in 2015, the year with the highest June through October mean inflow TP (20 μ g/L), but also the longest June – October water residence time of about 70 days.

Dissolved oxygen conditions have greatly improved in Lake Spokane since 85% of point-source effluent phosphorus was removed in 1977 and water quality data collected in Lake Spokane demonstrates a consistent improvement over the past seven years. That said, recent data indicate that DO concentrations do not meet the surface water quality standard as required by Table 7 in the DO TMDL (Ecology 2010) during portions of the summer critical season.

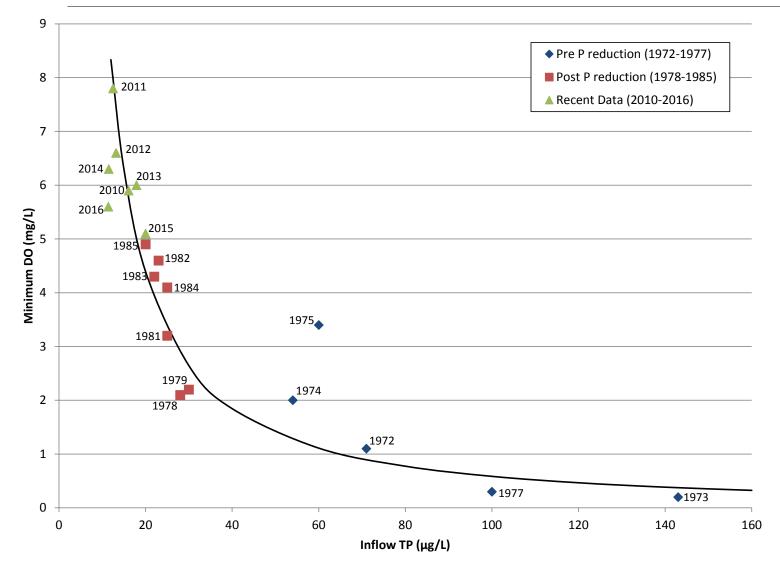


Figure 104. June-October Volume-Weighted Mean Inflow TP Concentrations related to Minimum Volume-Weighted Hypolimnetic DO Concentrations before and after Advanced Wastewater Treatment. Concentrations from 1972 through 1985 from observed loading at Nine Mile Dam (Patmont 1987). Mean inflow TP Concentrations from 2010-2016 were taken as Volume-Weighted Mean TP Concentrations at Station LL5, in lieu of loading data from Nine Mile Dam. Equation for the line: y = 187.1592x^{-1.2523}, r² = 0.84.

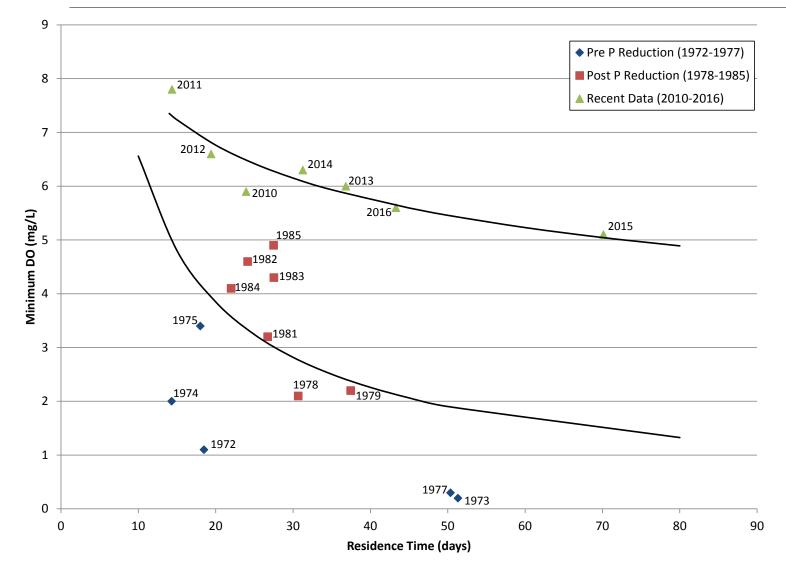


Figure 105. Mean hydraulic residence time (June-October) related to minimum v-w hypolimnetic (below 15 m) DO before and after advanced TP reduction in 1977. Residence time was calculated using reservoir outflows gaged by USGS (1972-1985) and Avista (2010-2016) at Long Lake Dam. Equation for line for all years: y = 38.535x^{-0.769}, r² = 0.11. Equation for line for 2010-2016: y = 13.634x^{-0.234}, r² = 0.85.

4.3 Phosphorus

Summer (June to September) epilimnetic mean TP concentrations in 2016 were lower than other recent years at LL1, LL2, and LL3 and similar to those in 2014 and 2015 at LL0 (Figure 106). Summer epilimnetic mean TPs at LL4 were lower in 2016 than any other recent year, with the exception of 2011, (Figure 106) and mean epilimnetic TP at LL5 in 2016 was similar to those in 2011 and 2014. However, epilimnetic TPs in 2016 were lower overall than in most other years. Summer mean epilimnetic TPs in 2012 through 2016 were calculated using concentrations at 0.5 and 5 m for stations LL0 to LL2, and concentrations at 0.5 m for stations LL3 to LL5. Summer means for 2010 and 2011 are based on averages from euphotic zone composite samples.

Summer mean TP decreased slightly through the reservoir in all seven years with the lowest TP usually at station LL0. Area-weighted, whole-reservoir epilimnetic TPs averaged $11.3 \pm 1.6 \mu g/L$ for the seven years, a variation of only 14% and with no evident trend. Area-weighted whole-reservoir epilimnetic TP was lowest in 2016 with 8.9 $\mu g/L$ and highest in 2013 with 13.4 $\mu g/L$. The seven-year mean puts the reservoir at the meso-oligotrophic state boundary, and is lower than epilimnetic TP observed in Lake Washington (14 $\mu g/L$, King County 2003) and Lake Sammamish (12 $\mu g/L$, Welch and Bouchard 2014).

Summer (June to September) hypolimnetic TPs also have been rather consistent the past seven years – mean $24.8 \pm 16\%$. Hypolimnetic TP was determined in the lacustrine zone for stations LL0, LL1, and LL2 for all seven years (Figure 107). Hypolimnetic TP was calculated using samples collected at 20 m and deeper in 2012 through 2016. This excludes the top 5 m of the hypolimnion, which is necessary in order to compare 2012-2016 data with those based on composite samples collected in 2010 and 2011 at various depths from 21 m and deeper. Hypolimnetic TPs calculated for stations LL0 and LL1 were volume-weighted while concentrations for station LL2 were from 1 m meter off the bottom only.

Maximum hypolimnetic TPs have been relatively low the past seven years usually less than 35 μ g/L, and the average volume-weighted hypolimnetic TP was only 23.4 μ g/L (May-October). The lowest concentrations were in 2011 while the highest were in 2016. The peak volume-weighted hypolimnetic TP was in early August 2016 at just over 55 μ g/L (Figure 107). The lowest volume-weighted epilimnetic TP concentrations also occurred in 2016.

Table 21 summarizes the mean summer TP from 2010 through 2016 in both the Spokane River (two Ecology monitoring stations upstream of Lake Spokane) and Little Spokane River as well as LL4 and LL5. There was no apparent trend at any site during the seven years. Also, TP at LL5 was about equal to that in the river inflow at Nine Mile. Separating out the July – September low flow period shows that TPs in the riverine and transition area (LL5 and LL4) contained double the down-reservoir concentrations and higher than the average inflow TP (Table 22).

Table 21. Summer (June – September) mean TP concentrations (µg/L) in the Spokane River compared to summer mean volume-weighted TP concentrations in Lake Spokane at LL4 and LL5. Volume weighted TPs for 2010 and 2011 at LL4 and LL5 are based on composite samples.

Year	Spokane River @ Riverside State Park	Spokane River @ Nine Mile	Little Spokane River near Mouth	Lake Spokane @ LL5	Lake Spokane @ LL4
2010	24	18.1	19.3	15.9	15.9
2011	15.4		21.6	12.5	11.9
2012	10.6		19.6	13.4	18.0
2013	14.3	12.9	17.5	19.0	19.9
2014	11.9	12.6	14.6	11.9	16.1
2015	21.3	15.4	107 ¹	21.1	22.1
2016	15.5	11.1	11.9	11.4	14.5
Mean	16.1	14.0	30.2	15.0	16.9
STDEV	4.9	2.8	34.0	3.8	3.4

¹June – September average for 2015 includes a very high value, 397 μ g/L, which was measured on June 2nd, 2015. This value corresponds with an extreme precipitation and runoff event in the Little Spokane River watershed. The summer average for the Little Spokane River without this value is 10.0 μ g/L.

Table 22. Mean Epilimnetic/Euphotic Zone TP Concentrations for Lake Spokane for 2010 – 2016.	

Lake Station	Mean Epilimnion/Euphotic Zone TP (µg/L)					
	Мау	June	July – Sept.	Oct.		
LL5	16.3	11.9	18.0	11.6		
LL4	16.1	11.1	18.9	14.0		
LL3	17.6	10.9	10.3	12.8		
LL2	16.2	9.7	9.7	9.0		
LL1	15.3	9.0	9.4	9.1		
LLO	14.3	9.6	8.2	6.9		

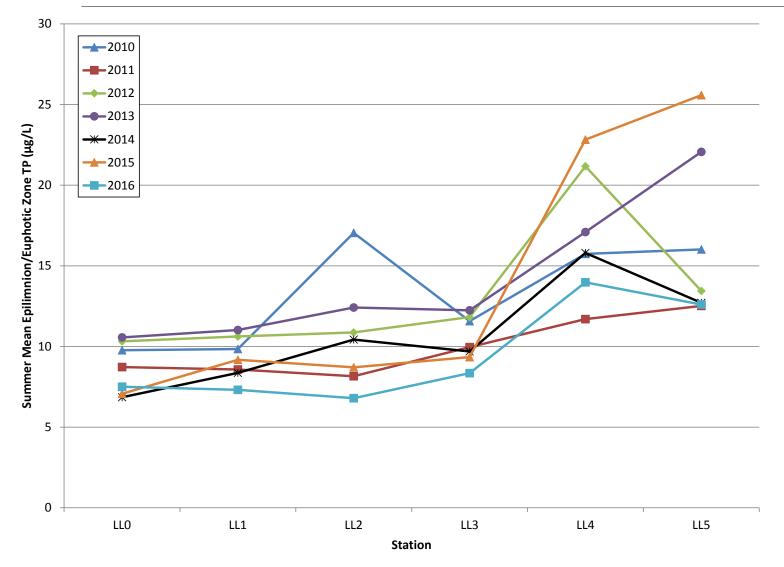


Figure 106. Summer (June-September) Mean Epilimnion/Euphotic Zone TP Concentrations, 2010-2016 (Data is presented from down-reservoir to up-reservoir, left to right.)

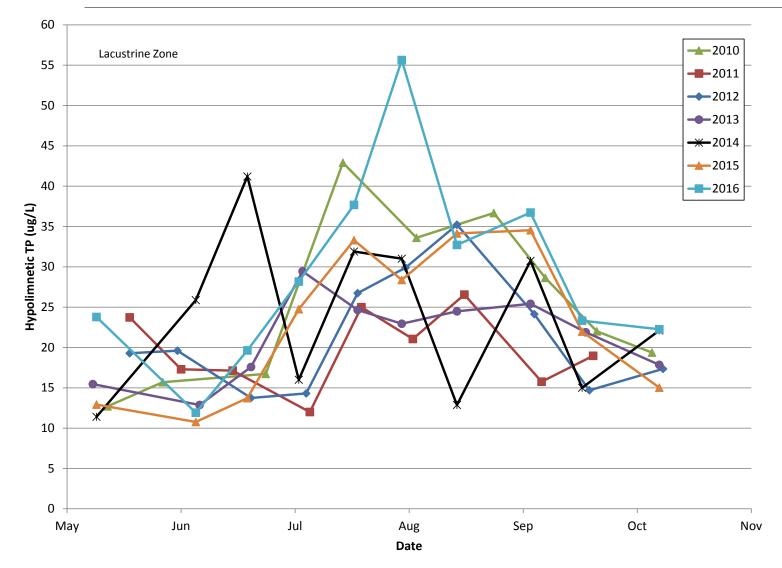


Figure 107. Lacustrine Zone Mean Hypolimnetic TP Concentrations, 2010-2016

4.4 Nitrogen

Epilimnetic mean TN concentrations in summer (June to September) 2015 and 2016 were higher at LL0, LL1, LL2, and LL3 than the previous five years (Figure 108). Summer epilimnetic mean TN concentrations at LL4 were lowest in 2012 through 2015 and highest in 2010, while near the opposite occurred at LL5, with lowest concentrations occurring in 2010 and highest in 2014 and 2016 (Figure 108). Epilimnetic TN was generally higher in 2016 than in other years. Summer mean epilimnetic TNs in 2012 through 2016 were calculated using concentrations at 0.5 and 5 m for stations LL0 to LL2, and concentrations at 0.5 m for stations LL3 to LL5. Summer means for 2010 and 2011 are based on averages from euphotic zone composite samples.

Total N concentrations have been increasing in the Spokane River for several decades (Figure 109). Mean (June – October) TN in the Spokane River at Riverside State Park, just downstream of the City of Spokane WWTP effluent discharge, have increased from 697 in 1997 to a peak of 2,293 μ g/L in 2015 while dissolved inorganic nitrogen (DIN) has increased from 420 μ g/L in 1978 to a peak of 2,130 μ g/L in 2015. The high TN and DIN concentrations in 2015 and 2016 may be due to the low river flows and greater influence of groundwater. Increased N has occurred while TP concentrations in the river steadily decreased following wastewater phosphorus reduction, reaching a rather stable level since the 1990s, ranging between about 15 – 20 μ g/L, except for a couple years , 1997 and 1998 (Figure 109).

AVISTA

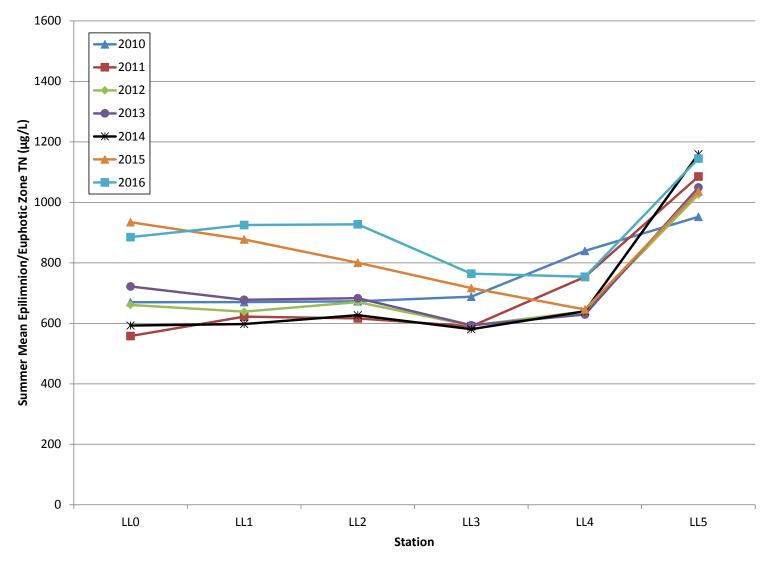


Figure 108. Summer (June-September) Mean Epilimnion/Euphotic Zone TN Concentrations, 2010-2016 (Data is presented from down-reservoir to up-reservoir, left to right.)

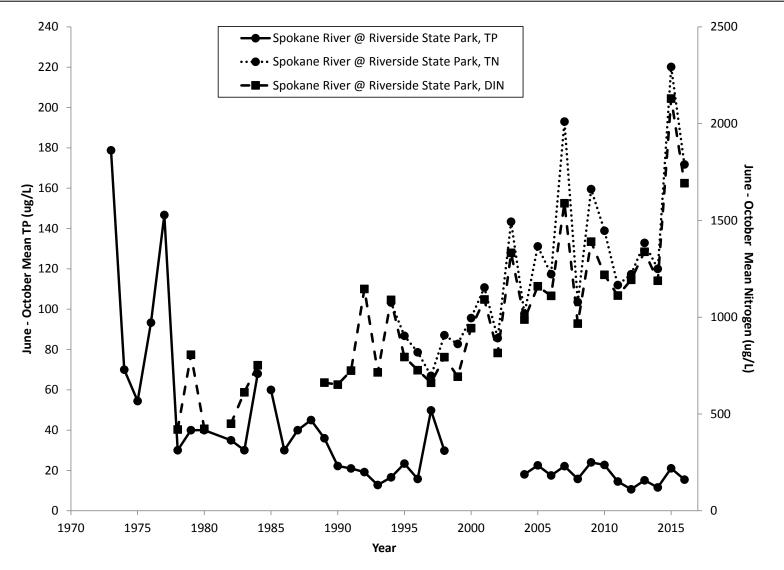


Figure 109. Mean (June – October) TN, DIN, and TP in the Spokane River at Riverside State Park.

4.5 Trophic State/Production

Lake Spokane was at or near the borderline oligotrophic-mesotrophic state on average in all zones for the last seven years, except for TP in the transition and riverine zones that averaged slightly greater than 10 μ g/L, the oligotrophic-mesotrophic boundary (Tables 23 and 24). Higher average chl and TP in the transition and riverine zones in 2015 resulted in slightly higher 7-year averages for chl and TP.

Table 23. 2012-2016 Summer (June to September) Epilimnetic Means Compared to 2010 and 2011Summer Euphotic Zone Means in Lacustrine, Transition, and Riverine Zones in LakeSpokane. Whole reservoir means are area weighted; Lacustrine 61%, Transition 29%, andRiverine 11% of the total reservoir area.

	Lacustrine (0.5, 5 m)			Transition (0.5 m)			Riverin	ne Zone ((0.5 m)	Who	Whole Reservoir		
Year	TP (µg/L)	Chl (µg/L)	Secchi (m)	TP (µg/L)	Chl (µg/L)	Secchi (m)	TP (µg/L)	Chl (µg/L)	Secchi (m)	TP (µg/L)	Chl (µg/L)	Secchi (m)	
2010	9.8	5.1	5.1	13.7	4.7	3.7	16.0	3.2	3.6	11.6	4.7	4.5	
2011	9.1	3.3	5.8	10.8	1.9	4.7	12.5	1.4	4.8	10.0	2.7	5.4	
2012	10.6	4.8	4.4	16.5	4.0	3.9	13.4	2.7	4.7	12.6	4.3	4.3	
2013	11.3	3.0	5.7	14.7	5.5	3.9	22.1	3.2	4.1	13.4	3.7	5.0	
2014	8.5	3.8	5.0	12.7	5.9	3.6	12.7	4.2	4.0	10.2	4.4	4.5	
2015	8.3	3.8	5.3	16.1	7.2	3.3	25.6	7.4	2.9	12.4	5.1	4.5	
2016	7.2	3.4	5.6	11.2	4.7	4.0	12.6	3.8	5.0	8.9	3.8	5.1	
Average	9.3	3.9	5.3	13.7	4.8	3.9	16.4	3.7	4.2	11.3	4.1	4.8	

Parameter	Oligo-Mesotrophic	Meso-Eutrophic		
TP (μg/L)	10	30		
Chl (µg/L)	3	9		
Secchi (m)	4	2		

Source: Nurnberg 1996

Average trophic state indices (TSI) in the upper reservoir zones in 2016 were at or slightly over a TSI of 40 - the oligo-mesotrophic boundary (Table 25). In the transition and riverine zones, TSIs for chl indicated mesotrophy throughout the reservoir, while those for TP were near or slightly over the oligotrophic-mesotrophic boundary. Average TSIs, did not indicate a eutrophic state at any site in 2016.

Average TSIs for chl, TP and Secchi depth for each zone over the seven year period are shown in Figures 110 through 112. Indices in the lacustrine zone have been fairly consistent over the seven year period with a slight decreasing trend for TP (Figure 110). TSIs for TP and Secchi disk depth were all lower than the oligotrophic-mesotrophic boundary while those for chl varied from just above the boundary to halfway to eutrophy.

Average TSIs were slightly higher in the transition and riverine zones, with near borderline mesoeutrophy reached a couple years, but were usually around the meso-oligotrophic boundary. The

higher chl TSIs in 2013 - 2015 in the transition zone and 2015 in the riverine zone were not that much above the respective average chl TSIs for all years, which varied by only 9% and 12%, respectively, among the years. Such variation is well within the variability of climatic conditions.

Table 25. Trophic State Indices for Lacustrine, Transition, and Riverine Zones in Lake Spokane, 2016 (Carlson 1974). Shaded indices (≥40) indicate mesotrophy and unshaded oligotrophy.

2016	Lacustrine	Transition	Riverine		
TSI-TP	33	39	41		
TSI-Chl	43	46	44		
TSI-Secchi	35	40	37		
TSI-Average	37	42	40		

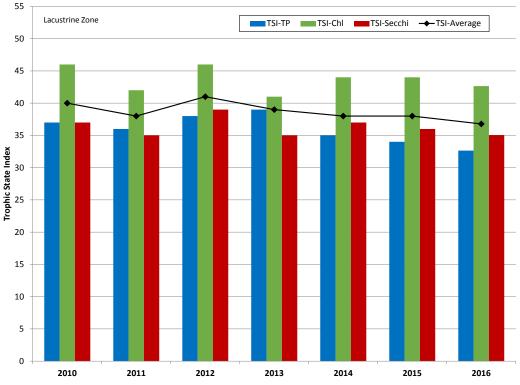
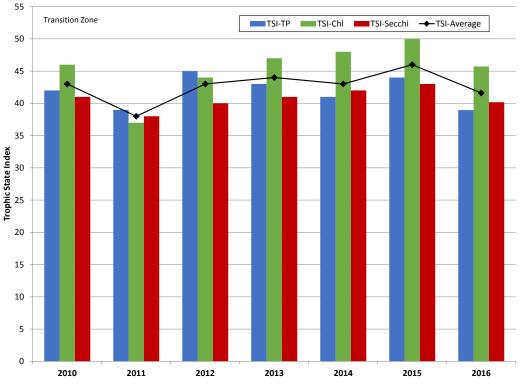



Figure 110. Average TSI Indices for the Lacustrine Zone in Lake Spokane, 2010 – 2016.

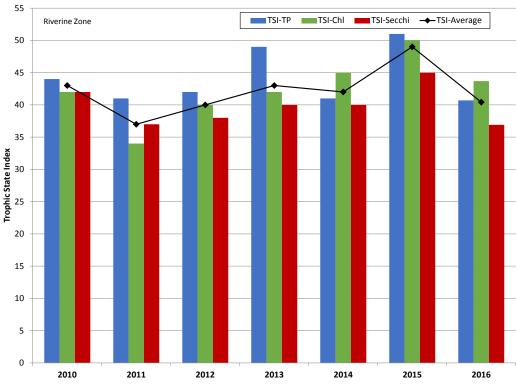


Figure 112. Average TSI Indices for the Riverine Zone in Lake Spokane, 2010 – 2016.

Total N:TP ratios were higher in 2016 than any other of the recent years (Table 26). There has been a tendency for higher ratios down reservoir, probably due to relatively greater removal of the most limiting nutrient, phosphorus, through uptake and settling of phytoplankton. However, ratios throughout the reservoir during 2010 – 2016 were all very high. The lowest ratio observed at the six stations during 2010 through 2016, was at LL4 in 2015 and mostly due to higher epilimnetic TP. The reservoir inflow TN:TP during 1974 to 1978 before effluent phosphorus reduction averaged 15 and algal growth potential bioassays indicated that N alone, or N+P, limited algal growth 60% of the time on average (Patmont 1987). Reducing phosphorus alone has greatly improved water quality of the reservoir, as well as increasing the inflow TN:TP ratio (LL5) three to almost six fold in recent years, compared to pre-phosphorus reduction inflow ratios. The increased ratio was also due partly to increased river N. Removing phosphorus alone has dramatically improved the trophic state of Lake Spokane.

The progression of trophic state improvement is illustrated in Figure 113. The reservoir was near hypereutrophy in chl and TP before wastewater phosphorus reduction with excess phosphorus, compared to chl, because TN:TP was low and nitrogen was usually limiting. After phosphorus reduction, phosphorus became the most limiting nutrient, since then chl has been directly related to TP, as inflow TP continued to decline, moving the reservoir from borderline meso-eutrophic in 1982 - 1985 to borderline meso-oligotrophic during 2010 - 2016.

Station	2010	2011	2012	2013	2014	2015	2016
LLO	68.5	64.0	64.0	68.3	86.5	132	118
LL1	68.1	72.5	60.2	61.5	71.4	95.7	127
LL2	39.5	75.5	61.6	55.0	60.1	91.9	136
LL3	59.4	59.3	50.1	48.5	59.9	76.7	91.5
LL4	53.3	64.4	30.2	36.8	40.5	28.3	53.9
LL5	59.5	86.7	76.3	47.5	91.2	40.5	90.8

 Table 26. Summer mean epilimnetic TN:TP ratios.

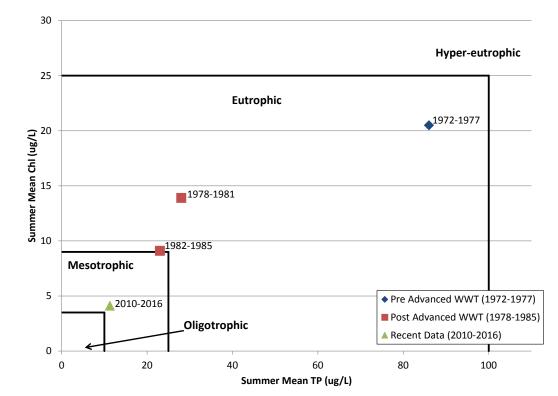


Figure 113. Transition of Lake Spokane from borderline hypereutrophy to meso-oligotrophy over a period of 44 years.

4.6 DO, Temperature and Fish Habitat

The percent of reservoir volume acceptable for growth of rainbow trout due to temperature and DO are shown for each station from 2010 through 2016 (Figures 114 through 119). The USFW temperature ($\leq 18^{\circ}$ C) and DO ($\geq 6.0 \text{ mg/L}$) criterion for rainbow trout were used to construct the habitat volume diagrams.

The lowest average inflow and longest water residence time (70 days) was in 2015, which was also the year with the least volume of acceptable trout habitat in the reservoir (Table 4 and Figures 114-119). On the other hand, available habitat was greatest during 2011, which had the shortest residence time (14 days). That was consistent with the current dependence of minimum hypolimnetic DO on water residence time. Available habitat volumes during other years with residence times in between those years ($\sim 20 - 40$) tended to be intermediate.

The data suggest that temperature restricted habitat for rainbow trout during spring and early summer far more than did DO at all sites and that temperature continued to be more limiting than DO for the rest of much of the year at the shallower sites. While DO was restrictive at LL0 later in the summer, there was little restriction from DO at other sites. Habitat became very restrictive for trout at LL0 during late July, August and early September when there were either no depths in the water column with temperatures less than 18°C and DO greater than 6 mg/L or only a very small percent of favorable habitat volume. The greater restriction by DO at LL0 than at other sites was due to DO reaching very low concentrations at depth, which in turn probably resulted to much longer residence times of bottom water, given the much longer water residence times in 2016 as well as in 2015. The data suggests that more acceptable habitat was available further upstream at LL1, LL2, and LL3.

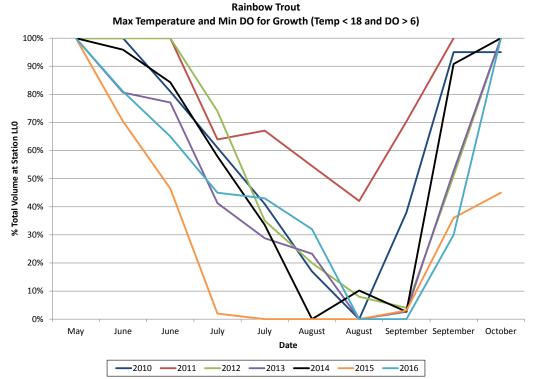


Figure 114. Habitat Conditions at Station <u>LL0</u> for Rainbow Trout in 2010 – 2016, Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

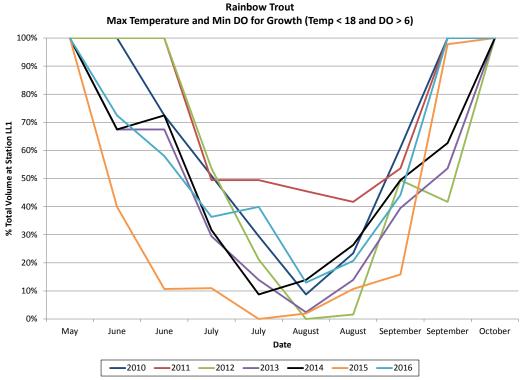


Figure 115. Habitat Conditions at Station <u>LL1</u> for Rainbow Trout in 2010 – 2016, Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

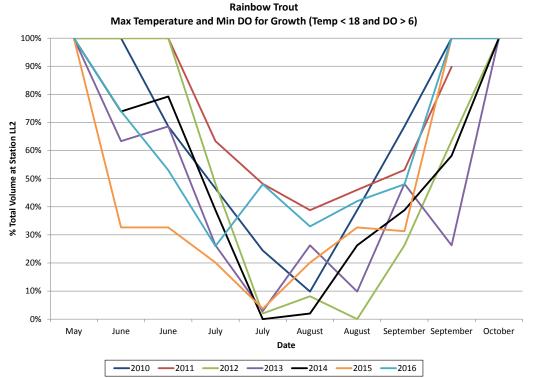


Figure 116. Habitat Conditions at Station <u>LL2</u> for Rainbow Trout in 2010 – 2016, Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

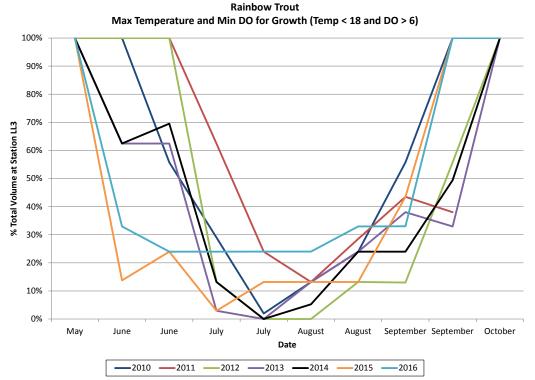


Figure 117. Habitat Conditions at Station <u>LL3</u> for Rainbow Trout in 2010 – 2016, Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

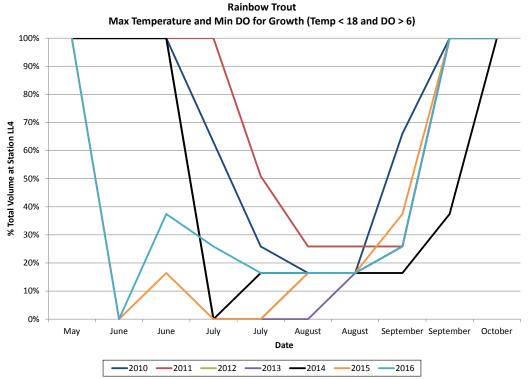


Figure 118. Habitat Conditions at Station <u>LL4</u> for Rainbow Trout in 2010 – 2016, Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

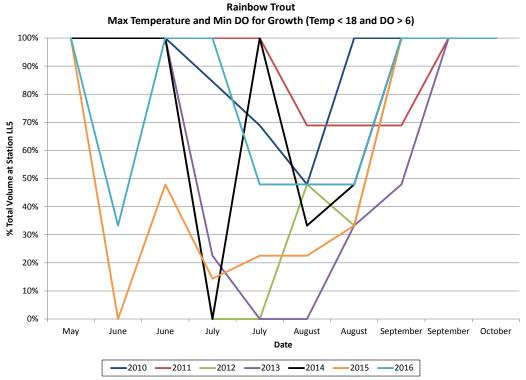


Figure 119. Habitat Conditions at Station <u>LL5</u> for Rainbow Trout in 2010 – 2016, Based on Maximum Temperature (18°C) and Minimum DO (6.0 mg/L) for Growth.

(This Page Intentionally Left Blank)

5. **REFERENCES**

- Avista Corporation. 2014. Lake Spokane Dissolved Oxygen Water Quality Attainment Plan 2013 Annual Summary Report. WA 401 Certification FERC License Appendix B, Section 5.6. For Spokane River Hydroelectric Project, FERC Project No. 2545.
- Ecology (Washington State Department of Ecology), 2010. Spokane River and Lake Spokane Dissolved Oxygen Total Maximum Daily Load: Water Quality Improvement Report. Publication No. 07-10-073. Revised February 2010. www.ecy.wa.gov/biblio/0710073.html
- EPA. 1986. Water Quality Criteria. U.S. Environmental Protection Agency 440/5-86-001 ("The Gold Book").
- King County. 2003. Lake Washington Existing Conditions Report: Sammamish/Washington Analysis and Modeling Program. Prepared by Tetra Tech, Inc. and Parametrix, Inc. King County Department of Natural Resources and Parks; Water and Lake Resources Division. 209 pp.
- Nürnberg, GK. 1996. Trophic state of clear and colored soft and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake and Reserv. Manage. 12:423-447.
- Patmont, C.R. 1987. The Spokane River Basin: allowable phosphorus loading. Seattle, WA: Harper-Owes. Final report, Contract No. C0087874 for State of Washington, Dept. of Ecology, with G.W. Pelletier, L.R. Singleton, R.A. Soltero, W.T. Trial, and E.B. Welch.
- Soltero, R.A., D.G. Nichols, and M.R. Cather. 1982. The effect of continuous advanced wastewater treatment by the City of Spokane on the trophic status of Long Lake, WA. DOE. Contract No. WF81-001. Completion Report. Eastern Washington University; Cheney, WA. 188pp.
- Tetra Tech, Inc. 2014. Quality Assurance Project Plan for Lake Spokane Baseline Nutrient Monitoring. In Support of Lake Spokane Dissolved Oxygen Water Quality Attainment Plan, Spokane River Hydroelectric Project, FERC Project no. 2545, WA 401 Certification Section 5.6. Prepared for Avista Utilities. January 2014.
- U.S. Fish and Wildlife Service (USFWS). 1984. Habitat Suitability Information: Rainbow Trout. Division of Biological Services, Research and Development. FWS/OBS-82/10.60.

- Welch, E.B., S.K. Brattebo, H.L. Gibbons, and R.W. Plotnikoff. 2015. A dramatic recovery of Lake Spokane water quality following wastewater phosphorus reduction. Lake Reserv. Manage. 31: 157-165.
- Welch, E.B. and D. Bouchard. 2014. Lake Sammamish Water Quality Response to Land Use Change. Prepared for King County Department of Natural Resources and Parks, Science and Technology Support Section, Seattle, WA.
- Welch, E.B. and J.M. Jacoby. 2004. Pollution Effects in Freshwater: Applied Limnology. 3rd ed., Snow Press, New York.

APPENDIX I – Lake Spokane *In Situ* Monitoring Data

(This Page Intentionally Left Blank)

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat. (%)	DO (mg/L)	Depth (m)**
5/17/2016	0.5	17.21	7.76	99.8	10.34	112.4		3.1
5/17/2016	1	16.98	7.76	99.8	10.38	112.3		
5/17/2016	2	16.77	7.87	100.3	10.54	113.6		
5/17/2016	3	16.43	7.88	99.9	10.56	113		
5/17/2016	4	15.97	7.63	98.5	10.28	109		
5/17/2016	5	15.71	7.34	97.4	9.83	103.6	9.91	
5/17/2016	6	15.56	7.37	96	9.75	102.4		
5/17/2016	7	15.42	7.33	95.3	9.83	102.9		
5/17/2016	8	15.33	7.33	94.5	9.86	103.1		
5/17/2016	9	15.32	7.32	94.4	9.84	102.8		
5/17/2016	9*	15.32	7.3	94.2	9.86	103		
5/17/2016	10	15.28	7.3	94.5	9.84	102.7		
5/17/2016	12	15.08	7.25	94.5	9.83	102.2		
5/17/2016	15	15.03	7.25	95.3	9.79	101.7	9.83	
5/17/2016	18	14.79	7.22	95.8	9.69	100.1		
5/17/2016	21	14.64	7.17	95.3	9.67	99.6		
5/17/2016	24	14.31	7.15	97.9	9.44	96.5		
5/17/2016	27	14.17	7.11	99.5	9.32	95		
5/17/2016	30	13.42	7.06	99.3	9.43	94.5		
5/17/2016	33	12.8	7.02	96.4	9.08	89.7		
5/17/2016	33*	12.82	7	96.5	9.1	90		
5/17/2016	36	12.5	6.98	93	8.94	87.8		
5/17/2016	39	12.15	6.92	89.9	8.52	83		
5/17/2016	42	11.97	6.87	88.1	8.24	79.9		
5/17/2016	45	11.95	6.84	87.3	8.2	79.5		
5/17/2016	47	11.89	6.81	87.6	8.08	78.3		
6/7/2016	0.5	21.8	7.75	107.6	9.32	113.1		6.2
6/7/2016	1	21.6	7.75	107.8	9.39	113.5		
6/7/2016	2	19.97	7.9	107.1	10.02	117.2		
6/7/2016	3	18.92	8.01	107.2	10.39	119		
6/7/2016	4	18.06	8.05	106.1	10.54	118.7		
6/7/2016	5	17.64	8.09	105.9	10.62	118.5	11	
6/7/2016	6	17.33	8.06	105.8	10.56	117.1		
6/7/2016	7	17.02	8.03	105.8	10.51	115.8		
6/7/2016	8	16.61	7.94	104.4	10.32	112.7		
6/7/2016	9	16.44	7.84	104.6	10.13	110.3		
6/7/2016	9*	16.46	7.84	104.6	10.18	110.9		
6/7/2016	10	16.37	7.78	104	10.04	109.2		

Table A-1. Station LL0 In Situ Water Quality Data, 2016

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)	-	(µS/cm)	(mg/l)	Sat.	DO (mg/L)	Depth (m)**
						(%)		
6/7/2016	12	16.2	7.67	109.3	9.8	106.2		
6/7/2016	15	15.79	7.54	105.6	9.53	102.3	10.1	
6/7/2016	18	15.24	7.43	101.1	9.37	99.4		
6/7/2016	21	14.81	7.37	98.2	9.3	97.8		
6/7/2016	24	14.67	7.31	98.6	9.18	96.2		
6/7/2016	27	14.51	7.25	100.2	9.02	94.2		
6/7/2016	30	14.43	7.23	101.5	8.88	92.6		
6/7/2016	33	14.34	7.19	102.6	8.73	90.9		
6/7/2016	33*	14.35	7.17	103	8.77	91.3		
6/7/2016	36	14.14	7.14	107.4	8.45	87.6		
6/7/2016	39	14.03	7.12	109	8.18	84.5		
6/7/2016	42	13.88	7.08	112.3	7.67	79		
6/7/2016	45	13.81	7.05	113.1	7.49	77		
6/7/2016	47	13.75	7.05	113.4	7.39	75.9		
6/21/2016	0.5	19.03	7.85	122.8	9.6	108.8		6.4
6/21/2016	1	19.01	7.9	122.8	9.57	108.5		
6/21/2016	2	18.85	7.98	122.9	9.74	110		
6/21/2016	3	18.62	7.99	122.5	9.79	110.1		
6/21/2016	4	18.57	8.06	122.8	9.92	111.4		
6/21/2016	5	18.39	8.03	122.9	9.85	110.2	10.8	
6/21/2016	6	18.29	7.95	124.2	9.68	108.2		
6/21/2016	7	18.09	7.86	125.2	9.45	105.2		
6/21/2016	8	17.89	7.75	129.5	9.12	101.1		
6/21/2016	9	17.85	7.71	128.9	9.05	100.2		
6/21/2016	9*	17.85	7.7	129	9.06	100.3		
6/21/2016	10	17.78	7.66	132	8.96	99.1		
6/21/2016	12	17.11	7.49	132.7	8.44	92		
6/21/2016	15	16.4	7.41	126.9	8.26	88.7	9.13	
6/21/2016	18	16.12	7.34	127.7	8.09	86.4		
6/21/2016	21	15.79	7.34	121	8.24	87.4		
6/21/2016	24	15.21	7.27	112.3	8.23	86.2		
6/21/2016	27	14.94	7.24	109	8.03	83.6		
6/21/2016	30	14.73	7.17	107.3	7.77	80.5		
6/21/2016	33	14.53	7.16	105.9	7.57	78.1		
6/21/2016	33*	14.5	7.13	106	7.57	78		
6/21/2016	36	14.28	7.09	106.5	7.26	74.5		
6/21/2016	39	13.96	7.02	109.6	6.08	61.9		
6/21/2016	42	13.78	6.97	110.6	5.48	55.6		
6/21/2016	45	13.7	6.94	111	5.16	52.2		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat.	DO (mg/L)	Depth (m)**
						(%)		
6/21/2016	47	13.57	6.89	111.5	4.63	46.8		
7/5/2016	0.5	19.83	8.17	138.6	9.83	113.6		9.2
7/5/2016	1	19.75	8.18	138.5	9.85	113.7		
7/5/2016	2	19.69	8.2	138.1	9.87	113.8		
7/5/2016	3	19.67	8.19	138.3	9.91	114.1		
7/5/2016	4	19.6	8.16	138.8	9.99	114.9		
7/5/2016	5	19.58	8.17	139.7	10.05	115.5	10.8	
7/5/2016	6	19.52	8.18	140.2	10.12	116.2		
7/5/2016	7	19.48	8.21	139.9	10.23	117.4		
7/5/2016	8	19.07	8.13	143.7	10.21	116.2		
7/5/2016	9	18.57	7.92	155.7	9.47	106.6		
7/5/2016	9*	18.58	7.9	155.4	9.44	106.4		
7/5/2016	10	18.03	7.91	155	9.66	107.6		
7/5/2016	12	17.55	7.76	157.6	9.22	101.7		
7/5/2016	15	16.98	7.52	162.1	8.11	88.5		
7/5/2016	18	16.66	7.45	164.1	7.69	83.2		
7/5/2016	21	16.24	7.38	160.9	7.38	79.3		
7/5/2016	24	15.93	7.36	165.3	7.39	78.8		
7/5/2016	27	15.64	7.3	157	6.94	73.5		
7/5/2016	30	15.21	7.19	134.4	5.83	61.3		
7/5/2016	33	14.59	7.15	109.6	5.99	62	6.49	
7/5/2016	33*	14.59	7.09	109.8	5.97	61.8		
7/5/2016	36	14.35	7.04	107.6	5.76	59.3		
7/5/2016	39	13.96	6.95	109.2	4.36	44.5		
7/5/2016	42	13.71	6.88	109.9	3.24	32.9		
7/5/2016	45	13.49	6.81	111.1	2.48	25.1		
7/5/2016	47	13.37	6.77	111.5	2.05	20.7		
7/19/2016	0.5	21.01	8.25	160.8	9.6	113.4		7.2
7/19/2016	1	20.79	8.23	160.7	9.59	112.9		
7/19/2016	2	20.73	8.23	160.5	9.59	112.6		
7/19/2016	3	20.64	8.22	160.7	9.56	112.1		
7/19/2016	4	20.55	8.19	160.9	9.53	111.6		
7/19/2016	5	20.28	8.12	163.3	9.46	110.1	10.5	
7/19/2016	6	19.76	7.94	181.7	9.18	105.8		
7/19/2016	7	19.11	7.8	189.8	8.8	100.2		
7/19/2016	8	18.69	7.73	190.4	8.64	97.5		
7/19/2016	9	18.33	7.64	185.9	8.29	92.8		
7/19/2016	9*	18.35	7.61	186.3	8.27	92.6		
7/19/2016	10	17.89	7.55	185.6	7.9	87.2		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat.	DO (mg/L)	Depth (m)**
7/19/2016	12	17.32	7.5	178.5	7.71	(%) 84.6		
7/19/2016	15	16.84	7.4	176.5	7.06	76.6	7.62	
7/19/2016	13	16.57	7.37	180.2	6.95	75	7.02	
7/19/2016	21	16.33	7.34	176.3	6.96	74.8		
7/19/2016	24	16.13	7.32	175.6	6.77	72.4		
7/19/2016	27	15.8	7.25	170.8	6.28	66.7		
7/19/2016	30	15.22	7.14	142.8	4.81	50.5		
7/19/2016	33	14.82	7.05	120.8	4.92	51.1		
7/19/2016	33*	14.81	7.01	121.5	4.91	51.1		
7/19/2016	36	14.4	6.97	111.1	4.65	47.9		
7/19/2016	39	13.96	6.87	109	3.27	33.4		
7/19/2016	42	13.74	6.81	109.4	2.32	23.6		
7/19/2016	45	13.5	6.74	110.2	1.22	12.3		
7/19/2016	46.5	13.38	6.71	111.4	1	10		
8/10/2016	0.5	22.5	8.94	180.7	11	134.1		4.1
8/10/2016	1	22.44	8.95	180.6	11.01	134.2		
8/10/2016	2	22.34	8.95	180.5	11.08	134.7		
8/10/2016	3	22.33	8.95	181	11.11	135		
8/10/2016	4	22.31	8.96	180.9	11.09	134.8		
8/10/2016	5	22.29	8.96	180.7	11.14	135.3	12.2	
8/10/2016	6	22.27	8.96	171.4	11.13	135.1		
8/10/2016	7	20.63	8.6	198.1	11.89	139.8		
8/10/2016	8	19.33	8.07	204.4	9.33	106.9		
8/10/2016	9	18.54	7.78	209.4	7.66	86.4		
8/10/2016	9*	18.57	7.71	210.1	7.76	87.6		
8/10/2016	10	18.12	7.6	214	7.04	78.7		
8/10/2016	12	17.72	7.5	218.9	6.5	72.1		
8/10/2016	15	17.27	7.47	219.3	6.39	70.2		
8/10/2016	18	16.97	7.47	226.3	6.52	71.2		
8/10/2016	21	16.74	7.42	215.6	6.04	65.6		
8/10/2016	24	16.5	7.4	214.2	6.03	65.2		
8/10/2016	27	16.05	7.29	193.5	4.81	51.5		
8/10/2016	30	15.51	7.2	160.8	3.84	40.6	4.37	
8/10/2016	33	14.92	7.14	133.2	4.03	42.1		
8/10/2016	33*	14.91	7.1	134.8	3.95	41.3		
8/10/2016	36	14.4	7.03	116	3.08	31.9		
8/10/2016	39	13.88	6.96	112.4	1.57	16.1		
8/10/2016	42	13.71	6.9	112	0.66	6.7		
8/10/2016	45	13.57	6.86	112.4	0	0		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat. (%)	DO (mg/L)	Depth (m)**
8/10/2016	47	13.38	6.83	113.6	0	0		
8/24/2016	0.5	21.51	8.8	205.7	10.35	122.8		3.9
8/24/2016	1	21.51	8.8	205.6	10.37	123		
8/24/2016	2	21.46	8.79	205.8	10.37	123		
8/24/2016	3	21.45	8.79	205.9	10.34	122.5		
8/24/2016	4	21.43	8.78	205.9	10.34	122.5		
8/24/2016	5	21.36	8.79	207	10.64	125.8	12.1	
8/24/2016	6	21.27	8.73	208	10.41	122.9		
8/24/2016	7	21.02	8.54	215.4	9.75	114.6		
8/24/2016	8	20.29	8.16	223.4	8.84	102.4		
8/24/2016	9	19.08	7.78	222.9	7.07	79.9		
8/24/2016	9*	18.87	7.65	225.6	6.91	77.8		
8/24/2016	10	18.29	7.5	231.4	5.88	65.5		
8/24/2016	12	17.69	7.44	237.6	5.82	64		
8/24/2016	15	17.31	7.4	241.5	5.46	59.5		
8/24/2016	18	16.96	7.34	239.9	4.99	54		
8/24/2016	21	16.66	7.3	230.1	4.79	51.6		
8/24/2016	24	16.37	7.23	220.4	4.07	43.6		
8/24/2016	27	15.92	7.15	201.1	2.96	31.3	3.63	
8/24/2016	30	15.57	7.1	180.8	2.35	24.7		
8/24/2016	33	15.05	7.07	150.1	2.76	28.7		
8/24/2016	33*	15.06	7.02	151.6	2.8	29.1		
8/24/2016	36	14.47	7	125.4	2.51	25.8		
8/24/2016	39	13.94	6.96	115.7	0.91	9.2		
8/24/2016	42	13.67	6.89	115.9	0	0		
8/24/2016	45	13.47	6.84	116.8	0	0		
8/24/2016	47	13.41	6.81	117.5	0	0		
9/6/2016	0.5	19.47	8.72	221	9.95	114.5		3.3
9/6/2016	1	19.46	8.73	221.1	9.97	114.7		
9/6/2016	2	19.5	8.74	220.7	9.98	114.9		
9/6/2016	3	19.5	8.75	220.9	9.98	115		
9/6/2016	4	19.51	8.75	220.7	9.97	114.8		
9/6/2016	5	19.5	8.75	221	9.94	114.5	10.6	
9/6/2016	6	19.49	8.74	221.2	9.92	114.2		
9/6/2016	7	18.73	7.67	250.9	6.11	69.3		
9/6/2016	8	17.96	7.55	258	5.67	63.3		
9/6/2016	9	17.56	7.52	263.2	5.69	63		
9/6/2016	9*	17.58	7.51	262.6	5.65	62.5		
9/6/2016	10	17.39	7.48	266.1	5.65	62.3		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat.	DO (mg/L)	Depth (m)**
						(%)		
9/6/2016	12	17.19	7.44	265.5	5.34	58.7		
9/6/2016	15	16.95	7.38	263	5	54.6	5.65	
9/6/2016	18	16.78	7.36	260	4.78	52.1		
9/6/2016	21	16.64	7.32	260.8	4.7	51		
9/6/2016	24	16.52	7.29	253.8	4.19	45.4		
9/6/2016	27	16.21	7.2	233.1	3.1	33.4		
9/6/2016	30	15.78	7.1	208.3	1.33	14.2		
9/6/2016	33	15.29	7.04	173.7	1.54	16.2		
9/6/2016	33*	15.28	7.02	172.4	1.52	16		
9/6/2016	36	14.63	7.02	137	1.99	20.7		
9/6/2016	39	13.95	6.96	120.1	0	0		
9/6/2016	42	13.73	6.89	119.6	0	0		
9/6/2016	45	13.53	6.84	120.6	0	0		
9/6/2016	47	13.47	6.81	121.7	0	0		
9/19/2016	0.5	17.82	8.5	236.9	9.46	104.7		4.9
9/19/2016	1	17.86	8.52	236.6	9.46	104.8		
9/19/2016	2	17.79	8.53	237.1	9.44	104.4		
9/19/2016	3	17.8	8.5	237.4	9.35	103.5		
9/19/2016	4	17.76	8.48	237.8	9.33	103.1		
9/19/2016	5	17.71	8.5	238.3	9.15	101		
9/19/2016	6	17.45	7.76	260	6	65.9		
9/19/2016	7	17.11	7.56	265.4	5.1	55.7		
9/19/2016	8	16.94	7.45	265.1	4.83	52.5		
9/19/2016	9	16.92	7.43	265.4	4.78	51.9		
9/19/2016	9*	16.92	7.41	265.3	4.82	52.3		
9/19/2016	10	16.78	7.41	266.4	4.71	51		
9/19/2016	12	16.62	7.4	267.8	4.72	51		
9/19/2016	15	16.3	7.35	260.8	4.15	44.5	4.79	
9/19/2016	18	15.98	7.27	247.8	3.5	37.3		
9/19/2016	21	15.56	7.32	252.6	4.44	46.8		
9/19/2016	24	15.45	7.34	257.9	4.97	52.3		
9/19/2016	27	15.24	7.38	257	5.35	56.1		
9/19/2016	30	15.11	7.42	259.8	5.69	59.5	6.62	
9/19/2016	33	14.99	7.36	245.9	4.92	51.3		
9/19/2016	33*	14.99	7.34	245.6	4.9	51.1		
9/19/2016	36	14.84	7.27	229.4	3.91	40.6		
9/19/2016	39	14.44	7.15	176.4	1.75	18.1		
9/19/2016	42	13.74	7.07	122.8	0	0		
9/19/2016	45	13.53	6.98	122.6	0	0		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)	•	(µS/cm)	(mg/l)	Sat.	DO (mg/L)	Depth (m)**
						(%)		-
9/19/2016	47	13.43	6.94	123.3	0	0		
10/12/2016	0.5	14.74	8.04	249	8.9	91.9		6.2
10/12/2016	1	14.72	8.06	249.3	8.93	92		
10/12/2016	2	14.73	8.05	248.9	8.88	91.6		
10/12/2016	3	14.74	8.06	248.9	8.91	91.8		
10/12/2016	4	14.73	8.05	248.9	8.9	91.7		
10/12/2016	5	14.74	8.06	249	8.89	91.7	9.76	
10/12/2016	6	14.75	8.06	248.9	8.89	91.6		
10/12/2016	7	14.74	8.07	248.8	8.9	91.7		
10/12/2016	8	14.74	8.07	249.1	8.87	91.5		
10/12/2016	9	14.73	8.07	248	8.88	91.5		
10/12/2016	9*	14.73	8.05	249.1	8.88	91.5		
10/12/2016	10	14.72	8.07	249.3	8.9	91.7		
10/12/2016	12	14.71	8.08	249	8.93	92		
10/12/2016	15	14.51	7.77	244.2	7.67	78.6	7.86	
10/12/2016	18	14.4	7.66	241	7.35	75.2		
10/12/2016	21	13.95	7.65	238.9	7.6	77		
10/12/2016	24	13.44	7.75	237.2	8.32	83.4		
10/12/2016	27	13.27	7.76	236.8	8.46	84.4		
10/12/2016	30	13.23	7.75	236.9	8.51	84.8		
10/12/2016	33	13.18	7.75	236.6	8.5	84.6		
10/12/2016	33*	13.17	7.77	236.9	8.5	84.6		
10/12/2016	36	13.16	7.76	236.8	8.5	84.6		
10/12/2016	39	13.13	7.72	236.9	8.53	84.9		
10/12/2016	42	13.12	7.75	236.7	8.51	84.7		
10/12/2016	45	13.11	7.74	236.4	8.49	84.5		

*QA/QC measurement for Hydrolab **Secchi disk depths average of 3 measurements

Fable A-2. Station LL1 In Situ Water Quality Data, 2016											
Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk			
	(m)	(°C)		(µS/cm)	(mg/l)	Sat. (%)	DO (mg/L)	Depth (m)**			
5/17/2016	0.5	17.49	8.43	102	11.28	123.4		2.6			
5/17/2016	1	17.28	8.38	102	11.34	123.6					
5/17/2016	2	16.92	8.45	101.2	11.39	123.2					
5/17/2016	3	16.89	8.35	101.6	11.36	122.8					
5/17/2016	4	16.32	8.22	99.2	10.93	116.7					
5/17/2016	4*	16.22	8.13	98.3	10.86	115.6					
5/17/2016	5	16.01	7.93	97.8	10.46	110.9	10.5				
5/17/2016	6	15.97	7.85	97.2	10.33	106.2					
5/17/2016	7	15.65	7.68	96	10.09	107.5					
5/17/2016	8	15.57	7.66	95.2	10.23	109.2					
5/17/2016	9	15.4	7.71	94.7	10.43	109.3					
5/17/2016	10	15.39	7.71	94.3	10.44	107					
5/17/2016	12	15.2	7.59	95.4	10.26	103.5					
5/17/2016	15	14.79	7.48	100.3	10.01	101.4					
5/17/2016	18	14.62	7.37	102.4	9.85	99.1					
5/17/2016	21	14.42	7.35	100.2	9.67	98.6	9.83				
5/17/2016	21*	14.42	7.32	100.2	9.62	96.2					
5/17/2016	24	14.16	7.23	98.1	9.44	87.6					
5/17/2016	27	13.56	7.16	97.3	8.71	83.1					
5/17/2016	30	12.83	7.09	97.9	8.4	79.5					
5/17/2016	33	12.61	7.03	97.1	8.07						
6/7/2016	0.5	23.4	7.87	109.2	8.98	112.5		6.7			
6/7/2016	1	22.95	7.83	109.6	9.1	112.9					
6/7/2016	2	21.08	7.8	109.6	9.35	111.9					
6/7/2016	3	18.82	8.04	111.3	10.35	118.3					
6/7/2016	4	18.45	8.02	111.9	10.34	117.4					
6/7/2016	4*	18.44	8.01	111	10.31	117					
6/7/2016	5	17.95	8.22	117.1	11.19	125.7	11.1				
6/7/2016	6	17.69	8.13	115.3	10.71	119.7					
6/7/2016	7	17.46	8.24	117.7	11.09	123.3					
6/7/2016	8	17.29	8.18	117.9	10.98	121.7					
6/7/2016	9	17.1	8.22	118.6	10.97	121.1					
6/7/2016	10	16.94	8.15	118	10.78	118.6					
6/7/2016	12	16.42	7.92	121.3	10.07	109.6					
6/7/2016	15	15.79	7.65	120.5	9.3	99.8					
6/7/2016	18	15.08	7.58	105.7	9.32	98.5					
6/7/2016	21	14.75	7.46	103.4	9.14	95.9	9.84				
6/7/2016	21*	14.7	7.4	103.2	9.16	96					

Table A-2. Station LL1 In Situ Water Quality Data, 2016

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat. (%)	DO (mg/L)	Depth (m)**
6/7/2016	24	14.52	7.35	103.3	8.91	93		
6/7/2016	27	14.43	7.31	103.5	8.76	91.3		
6/7/2016	30	14.3	7.26	105	8.39	87.2		
6/7/2016	33	14.14	7.16	107.8	7.17	74.2		
6/21/2016	0.5	19.31	7.82	131	9.11	103.9		8.9
6/21/2016	1	19.35	7.78	131.1	9.05	102.3		
6/21/2016	2	19.01	7.82	130.2	9.14	103.8		
6/21/2016	3	18.84	7.76	130.1	9.17	103.6		
6/21/2016	4	18.7	7.8	132.4	9.09	102.4		
6/21/2016	4*	18.7	7.78	132.4	9.08	102.3		
6/21/2016	5	18.39	7.74	131.8	9.11	101.9	8.41	
6/21/2016	6	18.22	7.77	131.4	9.13	101.9		
6/21/2016	7	18.13	7.75	131.4	9.07	100.9		
6/21/2016	8	18.03	7.7	131.9	8.97	99.7		
6/21/2016	9	17.88	7.67	135.2	8.81	97.6		
6/21/2016	10	17.73	7.61	139.4	8.67	95.8		
6/21/2016	12	17.12	7.51	145.7	8.27	90.2		
6/21/2016	15	16.57	7.43	153.4	8.18	88.1		
6/21/2016	18	15.94	7.42	166.3	8.2	87.2		
6/21/2016	21	15.83	7.49	171.2	8.25	87.6	8.65	
6/21/2016	21*	15.84	7.52	172.5	8.35	88.7		
6/21/2016	24	15.71	7.51	171	8.37	88.6		
6/21/2016	27	15.65	7.47	167.7	8.14	86		
6/21/2016	30	14.98	7.18	122.5	6.61	68.9		
6/21/2016	33	14.62	7.04	113.3	6.01	62.1		
7/5/2016	0.5	20.59	8.01	155.5	8.94	104.9		9.2
7/5/2016	1	20.54	7.99	155	8.92	104.6		
7/5/2016	2	20.53	7.98	155.3	8.94	104.7		
7/5/2016	3	20.43	7.96	155.4	8.93	104.4		
7/5/2016	4	20.35	7.95	154.1	8.89	103.8		
7/5/2016	4*	20.37	7.95	154	8.91	104.1		
7/5/2016	5	20.31	7.95	153.6	8.91	103.9	9.02	
7/5/2016	6	20.2	7.96	153.8	8.96	104.3		
7/5/2016	7	20.15	7.94	156.5	8.94	104		
7/5/2016	8	19.77	7.89	176.7	8.91	102.9		
7/5/2016	9	18.89	7.83	187.7	8.82	100		
7/5/2016	10	18.16	7.76	182.8	8.72	97.4		
7/5/2016	12	17.64	7.69	185.8	8.59	95		
7/5/2016	15	17.08	7.63	178.3	8.38	91.5		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat. (%)	DO (mg/L)	Depth (m)**
7/5/2016	18	16.68	7.56	177.5	8.17	88.5		
7/5/2016	21	16.22	7.49	180.7	7.71	82.7	8.54	
7/5/2016	21*	16.21	7.47	180.1	7.71	82.7		
7/5/2016	24	16.02	7.4	179.4	7.27	77.7		
7/5/2016	27	15.5	7.24	161.8	6	63.4		
7/5/2016	30	15.22	7.13	148	4.84	50.8		
7/5/2016	33	14.92	7.05	138.9	3.75	39.1		
7/19/2016	0.5	22	8.31	164.8	9.56	115.1		7.0
7/19/2016	1	21.78	8.31	164.8	9.6	115.1		
7/19/2016	2	21.68	8.3	164.6	9.58	114.7		
7/19/2016	3	21.62	8.3	164.8	9.59	114.7		
7/19/2016	4	21.58	8.3	165.5	9.55	114.1		
7/19/2016	4*	21.6	8.3	165.4	9.58	114.5		
7/19/2016	5	21.49	8.28	165.9	9.57	114.1	10.4	
7/19/2016	6	20.84	8.17	172.1	9.44	111.2		
7/19/2016	7	19.07	7.82	196.3	8.3	94.3		
7/19/2016	8	18.56	7.73	199.9	8.08	90.9		
7/19/2016	9	18.23	7.67	205.2	7.95	88.8		
7/19/2016	10	17.85	7.62	206.3	7.67	85		
7/19/2016	12	17.4	7.57	208.8	7.46	82		
7/19/2016	15	16.84	7.57	224.3	7.59	82.4		
7/19/2016	18	16.68	7.54	225.2	7.42	80.2		
7/19/2016	21	16.49	7.47	223	7.02	75.6		
7/19/2016	21*	16.5	7.45	223.1	7.04	75.9		
7/19/2016	24	16.28	7.35	210.2	6.24	66.9		
7/19/2016	27	15.63	7.17	169.8	4.41	46.6	4.08	
7/19/2016	30	15.1	7.02	148.9	2.36	24.7		
7/19/2016	33	14.98	6.92	143.1	1.76	18.4		
8/10/2016	0.5	22.43	8.99	183.4	11.34	138.1		3.4
8/10/2016	1	22.33	9	183.2	11.4	138.5		
8/10/2016	2	22.24	8.98	183.2	11.4	138.3		
8/10/2016	3	22.21	8.99	183.4	11.39	138.1		
8/10/2016	4	22.2	8.99	183.4	11.41	138.3		
8/10/2016	4*	22.18	8.99	183.3	11.41	138.3		
8/10/2016	5	22.09	8.99	183.7	11.38	137.7	12.9	
8/10/2016	6	21.83	8.85	190.5	10.93	131.6		
8/10/2016	7	20.35	8.25	221.5	9.06	106		
8/10/2016	8	19.3	7.92	231.8	7.9	90.5		
8/10/2016	9	18.71	7.79	245.5	7.45	84.3		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat. (%)	DO (mg/L)	Depth (m)**
8/10/2016	10	18.4	7.69	247.8	7.13	80.2		
8/10/2016	12	17.9	7.6	253	6.73	74.9		
8/10/2016	15	17.43	7.49	248.9	6.17	68		
8/10/2016	18	17.06	7.41	249.4	5.18	56.7		
8/10/2016	21	16.84	7.34	241.6	4.75	51.8	5.18	
8/10/2016	21*	16.84	7.3	241.2	4.7	51.2		
8/10/2016	24	16.57	7.28	227.5	4.61	49.9		
8/10/2016	27	16.21	7.23	211.7	3.86	41.5		
8/10/2016	30	15.67	7.15	186.1	2.3	24.5		
8/10/2016	33	15.08	7.07	161.9	0	0		
8/24/2016	0.5	21.96	8.82	204.5	9.93	118.9		4.0
8/24/2016	1	21.92	8.81	204.5	9.96	119.1		
8/24/2016	2	21.86	8.8	204.1	9.92	118.5		
8/24/2016	3	21.68	8.75	207.7	9.79	116.6		
8/24/2016	4	21.62	8.76	207.4	9.86	117.2		
8/24/2016	4*	21.6	8.77	207	9.81	116.8		
8/24/2016	5	21.54	8.79	205.6	9.81	116.5	10.1	
8/24/2016	6	21.49	8.74	207.1	9.71	115.1		
8/24/2016	7	21.35	8.64	213.1	9.2	108.8		
8/24/2016	8	19.98	8.06	240.1	7.93	91.3		
8/24/2016	9	19.01	7.69	239.7	7.12	80.4		
8/24/2016	10	18.55	7.67	257.1	6.94	77.7		
8/24/2016	12	17.92	7.58	265.9	6.75	74.5		
8/24/2016	15	17.44	7.55	268.6	6.71	73.4		
8/24/2016	18	17.14	7.5	269.5	6.54	71		
8/24/2016	21	16.81	7.41	267.4	5.9	63.6	6.77	
8/24/2016	21*	16.83	7.41	267.5	5.95	64.2		
8/24/2016	24	16.58	7.33	261.3	5.3	56.9		
8/24/2016	27	16.18	7.26	248	4.39	46.7		
8/24/2016	30	15.83	7.12	228.5	2.6	27.5		
8/24/2016	33	15.36	7.03	195.8	0.48	5		
9/6/2016	0.5	19.86	8.72	226	9.76	113.2		4.0
9/6/2016	1	19.86	8.73	225.8	9.73	112.8		
9/6/2016	2	19.87	8.73	225.7	9.75	13.1		
9/6/2016	3	19.86	8.74	226.1	9.74	113		
9/6/2016	4	19.87	8.74	225.7	9.72	112.7		
9/6/2016	4*	19.86	8.74	225.7	9.76	113.3		
9/6/2016	5	19.86	8.74	226.7	9.74	112.9	10	
9/6/2016	6	19.85	8.74	225.2	9.71	112.6		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat.	DO (mg/L)	Depth (m)**
0/0/2010		40.04	0.75		0.70	(%)		
9/6/2016	7	19.81	8.75	224.8	9.72	112.6		
9/6/2016	8	18.83	7.9	267.3	7.07	80.3		
9/6/2016	9	17.94	7.7	275.8	6.45	72		
9/6/2016	10	17.6	7.64	277.9	6.32	70		
9/6/2016	12	17.3	7.6	279.4	6.21	68.4		
9/6/2016	15	17.01	7.61	280.9	6.47	70.8		
9/6/2016	18	16.85	7.69	282.9	7.27	79.3		
9/6/2016	21	16.66	7.69	282.8	7.09	77	7.74	
9/6/2016	21*	16.66	7.68	282.7	7.08	76.9		
9/6/2016	24	16.5	7.7	284.6	7.22	78.2		
9/6/2016	27	16.36	7.5	273.4	5.45	58.8		
9/6/2016	30	16.11	7.3	250.2	2.78	29.9		
9/6/2016	33	15.32	7.22	195.9	0	0		
9/19/2016	0.5	17.95	8.47	241.7	9.13	101.3		4.9
9/19/2016	1	17.91	8.47	241.8	9.16	101.5		
9/19/2016	2	17.89	8.46	241.5	9.13	101.2		
9/19/2016	3	17.84	8.46	241.7	9.15	101.2		
9/19/2016	4	17.81	8.46	241.6	9.13	101		
9/19/2016	4*	17.81	8.45	241.7	9.16	101.3		
9/19/2016	5	17.79	8.44	241.6	9.12	100.9	9.48	
9/19/2016	6	17.79	8.43	241.6	9.1	100.7		
9/19/2016	7	17.78	8.42	241.8	9.03	99.9		
9/19/2016	8	17.73	8.42	242.4	8.95	98.9		
9/19/2016	9	17.7	8.43	241	9.09	100.4		
9/19/2016	10	17.65	8.4	242.7	8.91	98.3		
9/19/2016	12	17	7.79	266.5	6.75	73.3		
9/19/2016	15	16.21	7.72	275.3	7.07	75.6		
9/19/2016	18	15.79	7.73	275.4	7.4	78.5		
9/19/2016	21	15.42	7.73	275.9	7.66	80.6	7.56	
9/19/2016	21*	15.43	7.74	275.6	7.65	80.5		
9/19/2016	24	15.16	7.84	266.9	8.46	88.5		
9/19/2016	27	14.84	7.93	261.4	8.92	92.7		
9/19/2016	30	14.71	7.91	260.7	8.87	91.9		
9/19/2016	33	14.65	7.89	260.7	8.87	91.8		
10/12/2016	0.5	15	8.09	244.9	8.98	93.1		7.9
10/12/2016	1	14.98	8.09	244.7	8.97	93		
10/12/2016	2	14.96	8.11	244.6	9.03	93.5		
10/12/2016	3	14.96	8.11	244.5	9.03	93.5		
10/12/2016	4	14.94	8.11	244.7	9.03	93.5		

Date	Depth	Temperature	рΗ	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat.	DO (mg/L)	Depth (m)**
						(%)		
10/12/2016	4*	14.94	8.11	244.5	9.03	93.5		
10/12/2016	5	14.94	8.11	244.5	9.01	93.3	10	
10/12/2016	6	14.93	8.11	244.6	9.03	93.3		
10/12/2016	7	14.92	8.1	244.7	9.02	93.4		
10/12/2016	8	14.91	8.09	244.7	8.99	93		
10/12/2016	9	14.91	8.09	244.7	8.95	92.7		
10/12/2016	10	14.89	8.07	244.5	8.86	91.7		
10/12/2016	12	14.79	7.92	242.4	8.45	87.2		
10/12/2016	15	14.48	7.72	241.4	7.67	78.5		
10/12/2016	18	14.17	7.83	237.3	8.52	86.7		
10/12/2016	21	13.69	7.88	231	8.91	897	9.73	
10/12/2016	21*	13.69	7.88	231.1	8.94	90		
10/12/2016	24	13.16	7.82	228.5	9	89.6		
10/12/2016	27	12.97	7.79	230.5	8.82	87.5		
10/12/2016	30	12.96	7.75	231	8.71	86.4		
10/12/2016	31	12.95	7.75	230.7	8.73	86.5		

*QA/QC measurement for Hydrolab **Secchi disk depths average of 3 measurements

Date Depth Temperature Cond DO Winkler Secchi Disk pН DO Depth (m)** (m) (°C) $(\mu S/cm)$ (mg/l)Sat. DO (mg/L) (%) 5/17/2016 0.5 17.59 8.41 100.2 11.27 123.6 2.2 5/17/2016 17.44 100.6 11.34 123.9 1 8.42 5/17/2016 2 16.8 8.45 100.6 11.58 124.9 5/17/2016 3 16.25 8.51 98.7 12.01 128 5/17/2016 15.71 8.29 97.9 11.72 123.4 4 5/17/2016 5 98.5 11.31 118.7 15.52 8.12 11.3 5/17/2016 5* 8.1 98.9 11.33 118.7 15.45 5/17/2016 6 15.36 8.01 99.7 11.12 116.3 5/17/2016 7 15.33 8.03 99.5 11.2 117 5/17/2016 8 15.19 7.85 101.7 10.77 112.2 7.75 5/17/2016 9 103.9 109.5 15.11 10.53 5/17/2016 10 14.99 7.62 106.4 10.32 107.1 5/17/2016 12 14.53 7.46 111.9 9.78 100.5 5/17/2016 7.38 15 14.44 109.8 9.57 98.1 9.94 5/17/2016 18 7.35 113.3 9.62 97.8 14.07 5/17/2016 21 14.04 7.41 116.1 9.8 99.6 5/17/2016 24 13.79 7.43 117.5 9.91 100.2 24* 5/17/2016 13.79 7.43 117.2 9.87 99.7 5/17/2016 25 13.78 7.45 116.9 9.9 100 6/7/2016 0.5 22.66 7.91 110.9 9.18 113.2 4.9 6/7/2016 1 22.4 7.88 111.8 9.32 114.4 6/7/2016 2 21.4 7.93 112.9 9.73 117.2 6/7/2016 3 19.75 8.17 125.8 119 10.8 6/7/2016 122.2 4 18.29 8.28 11.15 126.1 6/7/2016 5 17.93 8.25 122.3 11.12 124.9 12.1 5* 6/7/2016 17.92 8.24 122.6 11.12 124.9 6/7/2016 122.5 6 17.65 8.16 10.77 120.2 6/7/2016 7 17.48 8.16 121.6 10.83 120.6 6/7/2016 8 17.4 8.1 122.8 10.62 118 6/7/2016 9 17.28 8.03 123.3 10.48 116 6/7/2016 10 16.87 7.96 122.8 10.4 114.2 6/7/2016 12 16.22 7.72 123 9.6 104 6/7/2016 15 15.65 7.6 120.4 9.33 99.9 9.88 6/7/2016 18 14.92 7.44 110.7 9.17 96.6 6/7/2016 21 14.67 7.39 106.9 8.94 93.7 6/7/2016 106.2 8.22 24 14.43 7.31 85.7 6/7/2016 24* 14.42 7.27 106.2 8.22 85.7 6/7/2016 25 14.4 7.23 106.3 8.03 83.7

Table A-3. Station LL2 In Situ Water Quality Data, 2016

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat. (%)	DO (mg/L)	Depth (m)**
6/21/2016	0.5	19.22	7.91	136.2	9.04	102.9		7.8
6/21/2016	1	19.16	7.89	136.7	9.03	102.7		
6/21/2016	2	19.09	7.87	136.3	9.05	102.7		
6/21/2016	3	18.83	7.84	137	9.1	101.8		
6/21/2016	4	18.8	7.84	136.8	8.96	101.1		
6/21/2016	5	18.73	7.8	137.2	8.91	100.5	9.75	
6/21/2016	5*	18.79	7.81	137.2	8.92	100.7		
6/21/2016	6	18.42	7.72	139.4	8.73	97.7		
6/21/2016	7	18.18	7.72	139.3	8.75	97.5		
6/21/2016	8	18.09	7.7	138.7	8.71	96.9		
6/21/2016	9	18.03	7.69	139.7	8.7	96.7		
6/21/2016	10	17.75	7.71	147.9	8.79	97.1		
6/21/2016	12	16.98	7.79	171.1	9.12	99.1		
6/21/2016	15	16.1	7.82	187.6	9.3	99.3	9.88	
6/21/2016	18	15.92	7.81	190.7	9.28	98.7		
6/21/2016	21	15.83	7.76	193	9.13	96.9		
6/21/2016	24	15.74	7.71	193.9	8.94	94.7		
6/21/2016	24*	15.75	7.71	193.9	8.95	94.8		
6/21/2016	25	15.71	7.67	194.1	8.78	92.9		
7/5/2016	0.5	21.6	8.07	155	9.05	108.3		6.5
7/5/2016	1	21.48	8.03	155.1	9.08	108.5		
7/5/2016	2	21.3	8.01	156.5	9.03	107.4		
7/5/2016	3	21.19	7.98	156.7	8.99	106.8		
7/5/2016	4	21.17	7.95	157.3	8.98	106.6		
7/5/2016	5	21.12	7.99	156.2	9	106.7	9.53	
7/5/2016	5*	21.12	7.98	156.5	8.99	106.6		
7/5/2016	6	21.1	7.98	156.5	9.01	106.8		
7/5/2016	7	21.05	7.96	157.7	8.94	105.8		
7/5/2016	8	20.97	7.95	160.3	8.89	105.1		
7/5/2016	9	19.34	7.89	198.5	9.03	103.4		
7/5/2016	10	18.85	7.87	204.5	8.86	100.4		
7/5/2016	12	18.14	7.76	207.1	8.55	95.5		
7/5/2016	15	16.88	7.64	199.4	8.36	91	8.5	
7/5/2016	18	16.37	7.54	192.3	7.84	84.4		
7/5/2016	21	16.02	7.4	187.4	7.03	75.2		
7/5/2016	24	15.82	7.3	182.8	6.25	66.5		
7/5/2016	24*	15.82	7.27	182.8	6.27	66.7		
7/5/2016	25	15.79	7.25	182.3	6.08	64.6		
7/19/2016	0.5	21.95	8.33	166.4	9.6	115.5		7.0

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat.	DO (mg/L)	Depth (m)**
						(%)		
7/19/2016	1	21.8	8.31	166.2	9.58	114.8		
7/19/2016	2	21.67	8.31	166.9	9.58	114.7		
7/19/2016	3	21.49	8.3	166.8	9.53	113.6		
7/19/2016	4	21.37	8.26	167.6	9.4	111.9		
7/19/2016	5	21.36	8.26	167.3	9.42	112	10.4	
7/19/2016	5*	21.34	8.22	167.2	9.39	111.6		
7/19/2016	6	21.28	8.21	169.8	9.3	112.4		
7/19/2016	7	20.71	8.11	179.4	9.19	107.2		
7/19/2016	8	19.2	7.92	199.4	8.73	99.5		
7/19/2016	9	18.37	7.82	207.9	8.46	94.8		
7/19/2016	10	18.02	7.78	210.5	8.43	93.8		
7/19/2016	12	17.77	7.75	213.6	8.41	93.1		
7/19/2016	15	17.22	7.72	219.8	8.38	91.7	9.04	
7/19/2016	18	16.86	7.65	225.3	8.1	88		
7/19/2016	21	16.57	7.62	231	7.78	84.1		
7/19/2016	24	16.55	7.58	231.2	7.61	82.2		
7/19/2016	24*	16.53	7.57	231.3	7.6	82		
7/19/2016	25	16.45	7.53	232.3	7.3	78.6		
8/10/2016	0.5	22.75	8.93	184	11.44	140.2		3.1
8/10/2016	1	22.71	8.94	183.8	11.43	140		
8/10/2016	2	22.49	8.95	183.2	11.62	141.7		
8/10/2016	3	22.41	8.95	183.4	11.66	142		
8/10/2016	4	22.36	8.95	183.3	11.68	142.1		
8/10/2016	5	22.3	8.94	183.5	11.54	140	12.2	
8/10/2016	5*	22.29	8.95	183	11.5	139.7		
8/10/2016	6	21.08	8.27	222.9	9.27	110		
8/10/2016	7	19.58	7.88	250.9	7.92	91.2		
8/10/2016	8	18.93	7.75	259.6	7.39	84		
8/10/2016	9	18.46	7.71	265	7.32	82.4		
8/10/2016	10	18.05	7.63	264.7	6.92	77.3		
8/10/2016	12	17.75	7.6	263.6	7.05	78.2		
8/10/2016	15	17.47	7.77	269.4	8.03	88.6	8.41	
8/10/2016	18	17.17	7.82	272.3	8.42	92.3		
8/10/2016	21	16.97	7.67	269.5	7.48	81.7		
8/10/2016	24	16.48	7.26	236.8	3.08	33.3		
8/10/2016	24*	16.48	7.21	236.2	3	32.4		
8/10/2016	25	16.22	7.13	220.3	2.16	23.2		
8/24/2016	0.5	21.98	8.79	210.9	9.7	116.1		4.0
8/24/2016	1	21.99	8.78	210.5	9.69	116.1		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat.	DO (mg/L)	Depth (m)**
						(%)		
8/24/2016	2	21.95	8.77	210.8	9.71	116.2		
8/24/2016	3	21.92	8.77	211.3	9.74	116.5		
8/24/2016	4	21.76	8.76	211.4	9.75	116.2		
8/24/2016	5	21.62	8.73	212.7	9.66	114.9	10.5	
8/24/2016	5*	21.65	8.72	211.9	9.69	115.3		
8/24/2016	6	21.44	8.66	216.1	9.33	110.5		
8/24/2016	7	20.65	8.32	236.8	8.62	100.6		
8/24/2016	8	19.37	8.01	258.1	8.11	92.1		
8/24/2016	9	18.19	7.86	274.8	7.78	86.4		
8/24/2016	10	17.99	7.8	276.2	7.71	85.2		
8/24/2016	12	17.62	7.71	279	7.44	81.7		
8/24/2016	15	17.28	7.66	276.8	7.14	77.8	7.98	
8/24/2016	18	16.96	7.57	274.5	6.65	72		
8/24/2016	21	16.75	7.52	273.2	6.37	68.7		
8/24/2016	24	16.54	7.46	273.1	5.86	62.9		
8/24/2016	24*	16.53	7.45	273.4	5.87	63		
8/24/2016	25	16.48	7.42	272.5	5.7	61.1		
9/6/2016	0.5	20.19	8.71	225	9.65	112.7		3.8
9/6/2016	1	20.16	8.72	224.8	9.65	112.6		
9/6/2016	2	20.19	8.73	224.6	9.6	112		
9/6/2016	3	20.2	8.73	224.9	9.64	112.6		
9/6/2016	4	20.19	8.73	224.6	9.64	112.6		
9/6/2016	5	20.18	8.73	224.9	9.63	112.4	10.3	
9/6/2016	5*	20.2	8.73	224.6	9.62	112.3		
9/6/2016	6	20.19	8.72	224.9	9.64	112.6		
9/6/2016	7	20.18	8.72	224.7	9.63	112.4		
9/6/2016	8	19.21	8.12	252.3	7.54	86.3		
9/6/2016	9	18.39	7.91	268.9	7.18	80.8		
9/6/2016	10	17.83	7.77	277.9	6.9	76.8		
9/6/2016	12	17.57	7.7	278.8	6.85	75.8		
9/6/2016	15	16.96	7.85	281.7	7.9	86.4	8.36	
9/6/2016	18	16.48	7.92	285.1	8.32	90		
9/6/2016	21	16.15	7.98	286.3	8.59	92.3		
9/6/2016	24	16.02	7.99	286.7	8.65	92.7		
9/6/2016	24*	16	7.99	286.6	8.65	92.6		
9/6/2016	25	15.98	7.98	286.8	8.57	91.7		
9/19/2016	0.5	17.95	8.34	244.6	8.83	97.9		4.733333333
9/19/2016	1	17.96	8.35	244.9	8.84	98.1		
9/19/2016	2	17.91	8.34	244.8	8.82	97.8		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat. (%)	DO (mg/L)	Depth (m)**
9/19/2016	3	17.87	8.34	244.4	8.77	97.1		
9/19/2016	4	17.86	8.33	244.6	8.71	96.5		
9/19/2016	5	17.86	8.32	245	8.67	96	9.23	
9/19/2016	5*	17.85	8.32	245	8.69	96.3		
9/19/2016	6	17.85	8.32	244.7	8.69	96.2		
9/19/2016	7	17.84	8.32	244.6	8.72	96.6		
9/19/2016	8	17.83	8.33	244.6	8.77	97.1		
9/19/2016	9	17.83	8.33	244.5	8.77	97		
9/19/2016	10	17.82	8.34	244.3	8.76	96.9		
9/19/2016	12	17.72	8.23	247.1	8.36	92.3		
9/19/2016	15	16.25	8.13	250.5	8.71	93.3	9.42	
9/19/2016	18	15.12	8.09	255.8	9.37	98		
9/19/2016	21	14.61	8.04	258.5	9.53	98.5		
9/19/2016	24	14.59	8.03	258.9	9.5	98.2		
9/19/2016	24*	14.59	8.03	258.9	9.53	98.5		
9/19/2016	25	14.59	8.03	258.9	9.5	98.2		
10/12/2016	0.5	15.2	8.16	237.6	9.39	97.8		5.7
10/12/2016	1	15.11	8.17	237.6	9.4	97.7		
10/12/2016	2	15.05	8.18	237.1	9.45	98		
10/12/2016	3	15	8.16	237.3	9.47	98.1		
10/12/2016	4	14.98	8.18	237.4	9.41	97.5		
10/12/2016	5	14.97	8.17	237.3	9.4	97.5	10	
10/12/2016	5*	14.97	8.17	237.6	9.42	97.6		
10/12/2016	6	14.96	8.17	237.6	9.38	97.2		
10/12/2016	7	14.96	8.17	237.6	9.36	96.9		
10/12/2016	8	14.95	8.17	237.5	9.37	97.1		
10/12/2016	9	14.94	8.16	237.5	9.35	96.8		
10/12/2016	10	14.94	8.16	237.3	9.35	96.8		
10/12/2016	12	14.92	8.16	237	9.31	96.4		
10/12/2016	15	13.96	7.95	212.9	9.12	92.4	9.97	
10/12/2016	18	13.58	7.85	203.1	9.14	91.9		
10/12/2016	21	13.44	7.78	202.1	9.05	90.7		
10/12/2016	24	13.38	7.72	206.4	8.87	88.7		
10/12/2016	24.5	13.35	7.71	208	8.85	88.5		

*QA/QC measurement for Hydrolab **Secchi disk depths average of 3 measurements

Table A-4. Station LL3 In Situ Water Quality Data, 2016											
Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk			
	(m)	(°C)		(µS/cm)	(mg/l)	Sat. (%)	DO (mg/L)	Depth (m)**			
5/18/2016	0.5	17.73	8.27	103.9	11.85	131.4		2.2			
5/18/2016	1	17.55	8.34	101.5	11.72	129.5					
5/18/2016	2	17.42	8.31	101.7	11.82	130.2					
5/18/2016	3	17.05	8.33	103.9	12.22	133.6					
5/18/2016	4	16.08	8.07	111.5	11.63	124.6					
5/18/2016	5	15.8	7.98	113.5	11.41	121.5	12.3				
5/18/2016	6	15.56	7.95	115.7	11.42	121					
5/18/2016	7	15.1	7.81	116.4	11.07	116.1					
5/18/2016	8	14.54	7.76	117.4	11.06	114.7					
5/18/2016	9	14.31	7.66	118.1	10.81	111.5					
5/18/2016	9*	14.31	7.62	118.1	10.82	111.6					
5/18/2016	10	14.19	7.58	118.3	10.68	109.8	11.3				
5/18/2016	12	13.95	7.55	118.8	10.61	108.5					
5/18/2016	15	13.87	7.53	119	10.57	107.9					
5/18/2016	18	13.41	7.46	119.4	10.51	106.3					
5/18/2016	18.5	13.38	7.43	119.4	10.45	105.6					
6/8/2016	0.5	22.28	7.83	120.9	9.56	117.6		4.2			
6/8/2016	1	22.28	7.85	121.2	9.59	117.8					
6/8/2016	2	22.26	7.86	121.3	9.6	117.8					
6/8/2016	3	21.69	7.92	122.1	9.91	120.4					
6/8/2016	4	20.56	7.98	124.2	10.22	121.3					
6/8/2016	5	19.31	7.95	124.4	10.14	117.4					
6/8/2016	6	18.75	7.83	125.1	9.83	112.6					
6/8/2016	7	18.67	7.81	124.7	9.82	112.3					
6/8/2016	8	18.34	7.75	124.7	9.94	112.8					
6/8/2016	9	18.32	7.79	125	9.89	112.3					
6/8/2016	9*	18.32	7.77	125.2	9.89	112.2					
6/8/2016	10	18.04	7.69	124.7	9.8	110.6					
6/8/2016	12	17.56	7.63	125.1	9.58	107.1					
6/8/2016	15	15.96	7.49	123.6	9.2	99.4					
6/8/2016	18	15.22	7.28	118.1	8.02	85.3					
6/8/2016	18.5	15.16	7.24	117.8	7.93	84.2					
6/22/2016	0.5	19.45	7.94	134	9.07	103.8		7.0			
6/22/2016	1	19.42	7.9	133.8	9.06	103.7					
6/22/2016	2	19.38	7.9	134.4	9.1	104.1					
6/22/2016	3	19.36	7.86	134.7	9.1	104.1					
6/22/2016	4	19.34	7.9	134.7	9.11	104.1					
6/22/2016	5	19.29	7.85	134.6	9.13	104.2	9.82				

Table A-4. Station LL3 In Situ Water Quality Data, 2016

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat.	DO (mg/L)	Depth (m)**
						(%)		
6/22/2016	6	19.19	7.87	134.8	9.03	102.9		
6/22/2016	7	19.01	7.84	135.1	8.99	102.1		
6/22/2016	8	18.4	7.83	143.4	9.02	101.2		
6/22/2016	9	18.28	7.87	151.4	9.26	103.5		
6/22/2016	9*	18.29	7.87	150.7	9.28	103.8		
6/22/2016	10	18.11	7.93	155	9.48	105.7	10	
6/22/2016	12	17.34	7.86	161.9	9.62	105.6		
6/22/2016	15	16.57	7.92	165.4	9.72	104.9		
6/22/2016	18	16.41	7.87	165.5	9.5	102.3		
6/22/2016	18.5	16.36	7.86	165.2	9.51	102.2		
7/6/2016	0.5	21.66	8.06	151.9	9.17	110		5.5
7/6/2016	1	21.65	8.06	152	9.15	109.8		
7/6/2016	2	21.64	8.06	152	9.17	109.9		
7/6/2016	3	21.64	8.06	152.5	9.18	110.1		
7/6/2016	4	21.59	8.03	154.4	9.18	110		
7/6/2016	5	21.13	7.98	174.1	9.07	107.7	9.62	
7/6/2016	6	20.75	8.02	178.4	9	106.1		
7/6/2016	7	19.32	8	193	8.94	102.4		
7/6/2016	8	18.73	7.93	197.7	8.76	99.2		
7/6/2016	9	18.67	7.92	197.8	8.72	98.6		
7/6/2016	9*	18.67	7.91	197.8	8.73	98.7		
7/6/2016	10	18.44	7.88	199	8.59	96.6		
7/6/2016	12	17.2	7.6	205.6	7.42	81.4		
7/6/2016	15	16.48	7.48	203.9	7.14	77.1	7.82	
7/6/2016	18	16.27	7.43	201.6	6.97	74.9		
7/6/2016	18.5	16.26	7.41	201.5	6.92	74.5		
7/20/2016	0.5	21.77	8.38	167.4	10.06	120.2		5.0
7/20/2016	1	21.77	8.37	167.1	9.98	119.4		
7/20/2016	2	21.7	8.36	167.1	9.93	118.6		
7/20/2016	3	21.66	8.35	167.9	9.91	118.3		
7/20/2016	4	21.57	8.29	169.6	9.76	116.2		
7/20/2016	5	21.43	8.25	173.6	9.57	113.7	10.1	
7/20/2016	6	21.31	8.24	176.3	9.76	115.7		
7/20/2016	7	20.94	8.23	181.3	9.79	115.1		
7/20/2016	8	19.94	8.07	199.6	9.14	105.4		
7/20/2016	9	18.76	7.97	217.1	8.89	100.1		
7/20/2016	9*	18.79	7.97	216.9	8.98	101.2		
7/20/2016	10	18.15	7.91	226.7	8.81	98	9.35	
7/20/2016	12	17.74	7.86	229.3	8.61	95		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat. (%)	DO (mg/L)	Depth (m)**
7/20/2016	15	17.43	7.74	226.6	8.06	88.3		
7/20/2016	18	16.94	7.61	226.5	7.32	79.4		
7/20/2016	19.5	16.77	7.53	228.5	6.9	74.6		
8/11/2016	0.5	22.62	8.88	186.9	11.07	134.5		3.3
8/11/2016	1	22.62	8.88	186.9	11.11	135		
8/11/2016	2	22.57	8.89	186.7	11.2	136		
8/11/2016	3	22.55	8.89	186.2	11.17	135.5		
8/11/2016	4	22.53	8.88	186.3	11.12	134.9		
8/11/2016	5	22.48	8.89	185.6	10.94	132.6	11.3	
8/11/2016	6	21.48	8.37	221.3	9.51	113.1		
8/11/2016	7	20.06	8.33	236.8	9.16	105.9		
8/11/2016	8	19.01	8.13	252.6	8.53	96.8		
8/11/2016	9	18.52	8	260.7	8.3	93		
8/11/2016	9*	18.57	8	259.5	8.26	92.7		
8/11/2016	10	18.1	8.01	264	8.69	96.6	9.52	
8/11/2016	12	17.18	8.03	270.6	8.93	97.4		
8/11/2016	15	16.69	8.02	273.2	8.98	97		
8/11/2016	18	16.46	8	273.9	8.94	96		
8/11/2016	19.5	16.44	7.99	274.1	8.92	95.8		
8/25/2016	0.5	22.08	8.86	206.1	10.51	126.2		3.5
8/25/2016	1	22.06	8.86	206.1	10.53	126.4		
8/25/2016	2	22.05	8.85	206.2	10.49	125.8		
8/25/2016	3	22.03	8.84	206.3	10.45	125.3		
8/25/2016	4	21.99	8.83	206.6	10.39	124.5		
8/25/2016	5	21.82	8.59	214.4	9.21	110	10.4	
8/25/2016	6	20.99	8.53	225.4	9.3	109.3		
8/25/2016	7	20.35	8.6	229.6	9.86	114.4		
8/25/2016	8	19.98	8.45	239.7	9.29	107		
8/25/2016	9	18.53	8.21	262.5	8.99	100.6		
8/25/2016	9*	18.51	8.17	261.7	8.92	99.8		
8/25/2016	10	17.84	8.03	272.9	8.64	95.3	8.35	
8/25/2016	12	17.39	8.01	276.4	8.78	95.9		
8/25/2016	15	17.05	8.04	276.6	9.03	98		
8/25/2016	18	16.9	8.05	277.2	9.13	98.8		
8/25/2016	19.5	16.89	8.02	277.1	9.08	98.2		
9/7/2016	0.5	20.21	8.77	215.6	9.44	109.7		3.1
9/7/2016	1	20.22	8.77	215.6	9.45	109.8		
9/7/2016	2	20.23	8.78	215.5	9.41	109.4		
9/7/2016	3	20.22	8.78	215.7	9.42	109.5		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat.	DO (mg/L)	Depth (m)**
						(%)		
9/7/2016	4	20.2	8.78	215.8	9.42	109.5		
9/7/2016	5	20.23	8.78	215.7	9.4	109.2	9.87	
9/7/2016	6	20.23	8.79	215.5	9.39	109.1		
9/7/2016	7	19.69	8.67	222.1	9.02	103.7		
9/7/2016	8	19.08	8.6	232.4	8.86	100.7		
9/7/2016	9	18.32	8.52	244.2	9.02	100.9		
9/7/2016	9*	18.29	8.51	244.5	9	100.7		
9/7/2016	10	17.71	8.1	268.8	8.01	88.5	8.68	
9/7/2016	12	17.09	8.32	263.9	9.05	98.7		
9/7/2016	15	15.64	8.22	282.9	9.5	100.4		
9/7/2016	18	15.4	8.16	285.3	9.39	98.8		
9/7/2016	19.5	15.32	8.15	286.7	9.44	99.2		
9/20/2016	0.5	17.82	8.53	234.8	9.12	100.6		4.0
9/20/2016	1	17.82	8.53	234.7	9.14	100.8		
9/20/2016	2	17.82	8.54	234.8	9.15	100.9		
9/20/2016	3	17.82	8.53	234.4	9.14	100.8		
9/20/2016	4	17.83	8.53	234.9	9.11	100.6		
9/20/2016	5	17.83	8.53	235	9.12	100.6	9.86	
9/20/2016	6	17.82	8.55	234.4	9.18	101.3		
9/20/2016	7	17.81	8.55	234.3	9.21	101.6		
9/20/2016	8	17.8	8.55	234.2	9.17	101.1		
9/20/2016	9	17.74	8.53	234.6	9.08	100.1		
9/20/2016	9*	17.76	8.54	234.6	9.15	100.7		
9/20/2016	10	17.72	8.53	234.7	9.09	100.1	9.89	
9/20/2016	12	17.29	8.51	235.9	9.2	100.4		
9/20/2016	15	15.88	8.38	245.9	9.62	101.9		
9/20/2016	18	14.48	8.16	259.1	9.6	98.7		
9/20/2016	19.5	14.46	8.14	259	9.63	99		
10/13/2016	0.5	14.42	8.19	231.8	9.51	98.5		3.7
10/13/2016	1	14.37	8.21	232.1	9.53	98.7		
10/13/2016	2	14.43	8.22	231.6	9.51	98.6		
10/13/2016	3	14.43	8.23	231.8	9.49	98.4		
10/13/2016	4	14.41	8.23	231.4	9.51	98.6		
10/13/2016	5	14.41	8.23	231.9	9.48	98.3	10.5	
10/13/2016	6	14.43	8.24	231.7	9.49	98.4		
10/13/2016	7	13.77	8.15	217	9.6	98.1		
10/13/2016	8	13.74	8.13	216.2	9.57	97.7		
10/13/2016	9	13.63	8.12	213.9	9.63	98.1		
10/13/2016	9*	13.62	8.12	213.9	9.64	98.2		

Date	Depth (m)	Temperature (°C)	рН	Cond (µS/cm)	DO (mg/l)	DO Sat. (%)	Winkler DO (mg/L)	Secchi Disk Depth (m)**
10/13/2016	10	13.41	8.08	209.5	9.68	98.1	10.6	
10/13/2016	12	13.04	8.02	201.6	9.75	98		
10/13/2016	15	12.89	7.97	196.9	9.66	96.8		
10/13/2016	18	12.52	7.93	192.1	9.74	96.8		
10/13/2016	18.5	12.51	7.91	192.3	9.74	96.8		

*QA/QC measurement for Hydrolab **Secchi disk depths average of 3 measurements

Secchi Disk Depth (m)** 5.1
5.1
- -
3.3
6.0
4.1
· · · · · · · · · · · · · · · · · · ·

Table A-5. Station LL4 In Situ Water Quality Data, 2016

Date	Depth	Temperature	pН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)	-	(µS/cm)	(mg/l)	Sat.	DO	Depth (m)**
						(%)	(mg/L)	
7/6/2016	7	17.27	8.13	205.1	9.65	106		
7/6/2016	8	17.26	8.12	204.9	9.65	106		
7/20/2016	0.5	22.44	8.56	168.6	10.63	128.8		3.5
7/20/2016	1	22.35	8.56	168.8	10.65	128.7		
7/20/2016	2	22.26	8.55	168.8	10.6	128		
7/20/2016	3	22.13	8.53	171.9	10.54	126.9		
7/20/2016	4	21.89	8.52	176.6	10.55	126.4		
7/20/2016	4*	21.87	8.52	176.9	10.6	126.9		
7/20/2016	5	20.15	8.34	209.7	10.2	118.1		
7/20/2016	6	17.41	8.04	250.9	9.48	103.8		
7/20/2016	7	17.37	8.02	251.3	9.44	103.3		
7/20/2016	8	17.37	8.02	251.4	9.43	103.3		
8/11/2016	0.5	22.33	8.83	191.9	10.71	129.5		2.6
8/11/2016	1	22.28	8.82	191.8	10.75	129.9		
8/11/2016	2	22.23	8.82	191.9	10.74	129.6		
8/11/2016	3	22.15	8.8	192.4	10.62	127.9		
8/11/2016	4	21.81	8.85	195.6	10.82	129.6		
8/11/2016	4*	21.84	8.87	195.7	10.87	130.2		
8/11/2016	5	20.51	8.72	216	10.78	125.6		
8/11/2016	6	15.75	8.14	277.9	9.84	104.2		
8/11/2016	7	15.67	8.1	278.2	9.79	103.4		
8/11/2016	8	15.66	8.07	278.6	9.78	103.3		
8/25/2016	0.5	22.24	9.03	198.6	11.64	140.2		2.4
8/25/2016	1	22.27	9.02	198.4	11.63	140.1		
8/25/2016	2	22.23	9.03	198.4	11.65	140.2		
8/25/2016	3	22.14	9.03	198.1	11.72	140.9		
8/25/2016	4	21.99	8.99	199.1	11.4	136.7		
8/25/2016	4*	22	8.98	200.1	11.21	134.3		
8/25/2016	5	20.72	8.81	222.7	11.32	132.3		
8/25/2016	6	16.17	8.18	281.7	10.08	107.4		
8/25/2016	7	16.13	8.15	282.3	10.02	106.7		
8/25/2016	8	16.13	8.14	282.4	10.01	106.6		
9/7/2016	0.5	19.64	8.87	213.4	10.23	117.4		2.5
9/7/2016	1	19.64	8.88	213.7	10.23	117.4		
9/7/2016	2	19.65	8.88	213.5	10.22	117.4		
9/7/2016	3	19.66	8.89	213.4	10.2	117.1		
9/7/2016	4	19.59	8.89	213.8	10.24	117.5		
9/7/2016	4*	19.64	8.89	213.6	10.2	117.2		
9/7/2016	5	17.78	8.71	236.2	10.17	112.5		

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)	-	(µS/cm)	(mg/l)	Sat.	DO	Depth (m)**
						(%)	(mg/L)	
9/7/2016	6	14.2	8.15	294.7	9.6	98.4		
9/7/2016	7	13.95	8.11	294.3	9.62	98		
9/7/2016	8	13.93	8.09	294.1	9.66	98.5		
9/20/2016	0.5	17.28	8.83	221.4	10.77	117.5		3.2
9/20/2016	1	17.28	8.84	221.6	10.77	117.5		
9/20/2016	2	17.28	8.84	221.7	10.78	117.6		
9/20/2016	3	17.24	8.83	222.5	10.73	116.9		
9/20/2016	4	16.6	8.77	230.6	10.89	117.2		
9/20/2016	4*	16.44	8.74	232.9	10.87	116.5		
9/20/2016	5	14.14	8.16	263.3	9.91	101.1		
9/20/2016	6	14.11	8.14	263.5	9.92	101.2		
9/20/2016	7	14.1	8.1	263.5	9.89	100.9		
9/20/2016	8	14.11	8.11	263.5	9.91	101		
10/13/2016	0.5	11.83	8.02	176	10.62	103.9		4.5
10/13/2016	1	11.82	8.01	176.7	10.65	104.2		
10/13/2016	2	11.82	8.02	176.2	10.69	104.5		
10/13/2016	3	11.79	8.03	176.9	10.66	104.2		
10/13/2016	4	11.72	8.07	177.8	10.81	105.5		
10/13/2016	4*	11.75	8.06	177.3	10.8	105.4		
10/13/2016	5	11.7	8.07	178.2	10.83	105.6		
10/13/2016	6	11.7	8.08	178.6	10.81	105.5		
10/13/2016	7	11.67	8.09	179.7	10.86	105.8		
10/13/2016	7.5	11.64	8.11	180.1	10.86	105.8		

*QA/QC measurement for Hydrolab **Secchi disk depths average of 3 measurements

Table A-6. Station LL5 In Situ Water Quality Data, 2016

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)		(µS/cm)	(mg/l)	Sat.	DO	Depth (m)**
- / /						(%)	(mg/L)	
5/18/2016	0.5	14.85	7.49	121.3	10.27	107.1		3.6
5/18/2016	1	14.84	7.46	120.9	10.23	106.7		
5/18/2016	2	14.83	7.47	121.3	10.24	106.8		
5/18/2016	3	14.81	7.45	121.5	10.26	107		
5/18/2016	4	14.81	7.47	120.9	10.21	106.4		
5/18/2016	5	14.8	7.46	121.7	10.23	106.6		
6/8/2016	0.5	18.17	7.62	124.6	8.82	99.8		4.0
6/8/2016	1	18.12	7.61	124.7	8.83	99.9		
6/8/2016	2	18.06	7.6	124.5	8.83	99.7		
6/8/2016	3	18.03	7.58	124.5	8.84	99.8		
6/8/2016	4	18.01	7.57	124.8	8.83	99.6		
6/8/2016	5	18	7.57	124.8	8.87	100		
6/22/2016	0.5	16.1	7.92	169.7	9.7	103.6		6.0
6/22/2016	1	15.87	7.89	169.9	9.67	102.9		
6/22/2016	2	15.8	7.86	169.9	9.66	102.6		
6/22/2016	3	15.76	7.84	170.2	9.69	102.8		
6/22/2016	4	15.74	7.84	169.9	9.66	102.4		
6/22/2016	5	15.77	7.84	169.8	9.67	102.6		
7/6/2016	0.5	17.12	7.99	213.3	9.11	99.8		5.4
7/6/2016	1	16.94	7.93	212.4	9.05	98.8		
7/6/2016	2	16.84	7.9	210.8	8.96	97.4		
7/6/2016	3	16.83	7.88	210.9	8.92	97.1		
7/6/2016	4	16.8	7.86	210.4	8.92	97		
7/6/2016	5	16.81	7.89	210.3	8.88	96.6		
7/20/2016	0.5	20.78	8.59	193.4	10.32	121.1		5.1
7/20/2016	1	19.44	8.45	209.9	10.33	118		
7/20/2016	2	16.6	8.18	254.9	9.91	106.8		
7/20/2016	3	16.47	8.09	255.7	9.88	106.1		
7/20/2016	4	16.47	8.09	256	9.84	105.7		
7/20/2016	5	16.45	8.08	255.7	9.86	105.9		
8/11/2016	0.5	21.71	8.99	197.9	11.25	134.4		4.4
8/11/2016	1	21.21	8.97	198.6	11.09	131.3		
8/11/2016	2	16.97	8.34	259.7	9.86	107		
8/11/2016	3	15.31	8.06	282.2	9.63	101		
8/11/2016	4	15.37	8.04	281.3	9.58	100.5		
8/11/2016	5	15.29	8.02	281.6	9.58	100.4		
8/25/2016	0.5	21.88	9.04	201.0	11.69	139.8		4.5
8/25/2016	0.5	21.33	9.04	201.7	11.52	136.6		4.5

Date	Depth	Temperature	рН	Cond	DO	DO	Winkler	Secchi Disk
	(m)	(°C)	•	(µS/cm)	(mg/l)	Sat.	DO	Depth (m)**
						(%)	(mg/L)	
8/25/2016	2	17.45	8.33	264.4	9.89	108.2		
8/25/2016	3	15.79	8.09	284.1	9.8	103.6		
8/25/2016	4	15.65	8.05	285.5	9.79	103.2		
8/25/2016	5	15.62	8.05	285.8	9.79	103.1		
9/7/2016	0.5	17.61	8.87	220	10.44	115.1		4.5
9/7/2016	1	17.34	8.82	224.4	10.4	114		
9/7/2016	2	13.67	8.18	293.9	9.81	99.4		
9/7/2016	3	13.43	8.11	296.7	9.7	97.8		
9/7/2016	4	13.35	8.07	296.6	9.68	97.4		
9/7/2016	5	13.35	8.06	296.9	9.67	97.2		
9/20/2016	0.5	13.48	8.13	263.4	10.15	102.1		5.7
9/20/2016	1	13.45	8.12	263	10.19	102.4		
9/20/2016	2	13.42	8.12	263.1	10.21	102.5		
9/20/2016	3	13.4	8.12	262.8	10.19	102.3		
9/20/2016	4	13.38	8.12	262.7	10.19	102.2		
9/20/2016	5	13.36	8.12	262.5	10.21	102.4		
10/13/2016	0.5	11.46	7.84	172.6	10.06	97.6		4.6
10/13/2016	1	11.45	7.83	172.2	10.02	97.2		
10/13/2016	2	11.45	7.83	172	10	97		
10/13/2016	3	11.4	7.81	171.1	9.96	96.5		
10/13/2016	4	11.4	7.8	171.2	9.98	96.7		

*QA/QC measurement for Hydrolab **Secchi disk depths average of 3 measurements

APPENDIX II – Lake Spokane Laboratory Monitoring Data

(This Page Intentionally Left Blank)

Table B-1. Lake Spokane Lab Data, 2016

Date			TP (µg/L)		
Date	0.5 m	5 m	15 m	30 m	B-1
5/17/2016	16.3	18.6	18.1	17.4	29.9
6/7/2016	4.2	21.0	7.0	13.5	21.9
6/21/2016	5.1	6.2	5.9	12.6	33.2
7/5/2016	6.0	6.5	6.6	15.5	45.7
7/19/2016	6.9	6.1	9.7	34.0	57.0
8/10/2016	9.1	8.6	4.9	41.9	121.9
8/24/2016	6.6	7.9	4.3	44.0	44.3
9/6/2016	5.8	7.5	3.8	47.9	51.6
9/19/2016	5.0	7.7	17.1	24.5	52.5
10/12/2016	6.4	7.2	18.1	22.7	32.0

Date			SRP (µg/L)		
Date	0.5 m	5 m	15 m	30 m	B-1
5/17/2016	1.0	1.0	1.8	2.4	12.8
6/7/2016	1.0	1.0	1.0	4.3	14.2
6/21/2016	1.0	1.0	1.0	8.5	26.5
7/5/2016	1.0	1.0	1.0	14.9	35.3
7/19/2016	1.0	1.0	5.8	31.0	41.1
8/10/2016	1.0	1.0	1.0	34.6	35.8
8/24/2016	1.0	1.3	1.6	43.8	43.3
9/6/2016	1.0	4.0	2.9	44.3	49.3
9/19/2016	1.0	2.1	17.0	22.7	50.3
10/12/2016	1.0	1.5	11.7	13.7	14.1

Date		Chl (µg/L)	
Date	0.5 m	5 m	15 m
5/17/2016	3.3	6.2	4.7
6/7/2016	1.0	3.8	5.3
6/21/2016	2.0	3.3	2.2
7/5/2016	1.1	2.0	2.8
7/19/2016	1.9	3.2	1.3
8/10/2016	4.1	5.3	1.1
8/24/2016	5.9	6.9	2.0
9/6/2016	4.7	5.1	1.2
9/19/2016	3.9	3.2	0.9
10/12/2016	3.2	3.4	0.9

Data		TPN (μg/L)							
Date	0.5 m	5 m	15 m	30 m	B-1				
5/17/2016	455	469	462	489	476				
6/7/2016	507	496	526	590	622				
6/21/2016	519	510	584	488	599				
7/5/2016	630	736	880	1061	746				
7/19/2016	1123	1144	1543	1184	938				
8/10/2016	699	690	1259	833	765				
8/24/2016	943	1141	1730	1035	657				
9/6/2016	1097	1193	1755	1321	595				
9/19/2016	1387	1343	1707	1716	600				
10/12/2016	1812	1543	1850	1846	1788				

Data		NO3+NO2 (µg/L)							
Date	0.5 m	5 m	15 m	30 m	B-1				
5/17/2016	327	325	328	381	296				
6/7/2016	356	355	401	393	435				
6/21/2016	455	426	522	419	472				
7/5/2016	533	552	753	845	575				
7/19/2016	700	743	978	758	597				
8/10/2016	612	613	1220	824	508				
8/24/2016	735	770	1329	940	480				
9/6/2016	859	854	1426	938	403				
9/19/2016	1032	1036	1497	1462	334				
10/12/2016	1154	1215	1268	1208	1162				

Date		TP (µ	ıg/L)	
Date	0.5 m	5 m	20 m	B-1
5/17/2016	17.1	20.2	20.8	26.8
6/7/2016	2.8	8.2	6.2	14.0
6/21/2016	4.6	6.0	16.0	32.0
7/5/2016	4.1	7.2	15.9	47.0
7/19/2016	13.6	15.8	19.5	72.2
8/10/2016	7.9	11.3	32.0	68.2
8/24/2016	5.2	5.9	12.5	54.2
9/6/2016	5.3	5.9	14.3	57.5
9/19/2016	4.9	8.2	12.1	25.8
10/12/2016	6.4	9.3	14.9	24.1

Data	SRP (µg/L)			
Date	0.5 m	5 m	20 m	B-1
5/17/2016	1.0	1.0	1.0	9.5
6/7/2016	1.0	1.0	1.8	8.8
6/21/2016	1.0	1.0	9.4	23.6
7/5/2016	1.0	1.0	9.0	31.1
7/19/2016	1.4	2.3	17.2	50.5
8/10/2016	1.0	1.0	22.7	55.8
8/24/2016	1.0	1.5	12.4	47.6
9/6/2016	1.0	1.7	14.4	46.9
9/19/2016	1.0	1.5	10.6	10.9
10/12/2016	1.0	2.0	9.4	11.3

Date	Chl (µg/L)				
Date	0.5 m	5 m	20 m		
5/17/2016	5.0	7.1	4.5		
6/7/2016	1.0	1.3	2.1		
6/21/2016	0.8	1.1	1.4		
7/5/2016	0.9	0.9	0.5		
7/19/2016	2.3	2.4	0.9		
8/10/2016	4.8	5.9	0.5		
8/24/2016	4.3	5.1	1.1		
9/6/2016	4.3	4.3	0.9		
9/19/2016	3.9	3.9	0.7		
10/12/2016	2.1	2.7	0.7		

Data	TPN (μg/L)			
Date	0.5 m	5 m	20 m	B-1
5/17/2016	469	468	546	519
6/7/2016	499	610	562	542
6/21/2016	600	593	922	632
7/5/2016	763	816	1059	927
7/19/2016	1168	1219	1908	1170
8/10/2016	684	721	1447	731
8/24/2016	931	926	1763	1218
9/6/2016	1195	1041	2143	1046
9/19/2016	1519	1517	1766	1709
10/12/2016	1554	1514	1712	1790

Data	NO3+NO2 (μg/L)			
Date	0.5 m	5 m	20 m	B-1
5/17/2016	298	309	394	381
6/7/2016	342	414	434	410
6/21/2016	525	543	779	499
7/5/2016	681	684	934	815
7/19/2016	726	737	1251	731
8/10/2016	607	606	1343	719
8/24/2016	717	712	1477	926
9/6/2016	844	872	2099	762
9/19/2016	1002	1056	1524	1483
10/12/2016	1102	1109	1174	1148

Date	TP (μg/L)			
Date	0.5 m	5 m	15 m	B-1
5/17/2016	27.0	22.3	22.1	27.1
6/7/2016	3.4	4.7	7.2	10.4
6/21/2016	5.0	5.6	8.2	17.7
7/5/2016	7.5	7.3	15.8	31.4
7/19/2016	6.1	9.5	14.4	30.5
8/10/2016	7.2	6.0	10.4	55.1
8/24/2016	5.7	15.3	9.4	23.8
9/6/2016	6.6	6.5	10.9	28.5
9/19/2016	5.9	6.4	12.7	19.6
10/12/2016	6.7	10.6	13.1	22.6

Data	SRP (μg/L)			
Date	0.5 m	5 m	15 m	B-1
5/17/2016	1.0	1.0	1.7	3.1
6/7/2016	1.0	1.0	1.1	5.2
6/21/2016	1.0	1.0	2.6	5.6
7/5/2016	1.0	1.0	8.1	21.9
7/19/2016	1.0	1.4	9.5	17.8
8/10/2016	1.0	1.0	2.1	41.3
8/24/2016	1.0	1.2	5.2	19.7
9/6/2016	1.0	1.0	6.4	8.6
9/19/2016	1.0	1.0	2.8	7.7
10/12/2016	1.0	1.0	6.4	9.4

Date	Chl (µg/L)			
Date	0.5 m	5 m	15 m	
5/17/2016	13.6	5.1	4.3	
6/7/2016	1.3	6.2	5.3	
6/21/2016	1.1	1.1	1.9	
7/5/2016	1.2	1.6	1.1	
7/19/2016	2.7	2.8	2.1	
8/10/2016	8.0	8.3	1.6	
8/24/2016	4.5	6.4	2.0	
9/6/2016	4.1	3.9	1.6	
9/19/2016	3.6	3.1	2.7	
10/12/2016	2.3	3.4	2.3	

Date	TPN (μg/L)			
Date	0.5 m	5 m	15 m	B-1
5/17/2016	508	463	683	458
6/7/2016	445	621	624	549
6/21/2016	643	654	1081	1310
7/5/2016	933	811	1420	1182
7/19/2016	1133	1205	1884	1921
8/10/2016	619	718	1603	1133
8/24/2016	941	1030	1719	1774
9/6/2016	891	1022	1877	2133
9/19/2016	1657	1511	1698	1870
10/12/2016	1283	1300	1384	1688

Data	NO3+NO2 (μg/L)			
Date	0.5 m	5 m	15 m	B-1
5/17/2016	293	293	482	520
6/7/2016	359	492	557	425
6/21/2016	539	569	889	993
7/5/2016	648	701	1107	938
7/19/2016	723	736	1210	1277
8/10/2016	540	564	1538	1130
8/24/2016	722	785	1616	1536
9/6/2016	773	807	1411	2048
9/19/2016	1049	1079	1185	1452
10/12/2016	985	1009	1118	1123

Date	TP (µg/L)			
Date	0.5 m	5 m	10 m	B-1
5/18/2016	17.7	18.6	18.6	19.3
6/8/2016	5.5	9.5	9.3	10.5
6/22/2016	7.4	8.4	7.5	16.7
7/6/2016	6.5	7.6	14.8	36.1
7/20/2016	8.8	8.9	43.5	25.9
8/11/2016	8.7	9.5	12.8	19.4
8/25/2016	9.7	13.8	10.6	19.8
9/7/2016	11.0	10.1	10.7	21.3
9/20/2016	9.1	8.0	9.2	16.2
10/13/2016	14.6	27.8	15.7	19.9

Date	SRP (µg/L)			
Date	0.5 m	5 m	10 m	B-1
5/18/2016	1.1	1.3	1.5	2.0
6/8/2016	1.0	1.0	1.0	3.8
6/22/2016	1.0	1.0	1.0	1.4
7/6/2016	1.0	1.0	3.6	18.6
7/20/2016	1.5	1.6	2.7	15.0
8/11/2016	1.0	1.0	3.6	3.6
8/25/2016	1.0	1.0	1.0	3.0
9/7/2016	1.1	1.2	2.3	4.4
9/20/2016	1.0	1.0	1.1	7.0
10/13/2016	1.0	1.0	3.3	6.4

Data		Chl (µg/L)				
Date	0.5 m	5 m	10 m			
5/18/2016	6.4	5.9	5.1			
6/8/2016	4.8	1.4	4.2			
6/22/2016	1.6	1.5	2.4			
7/6/2016	2.5	3.0	2.2			
7/20/2016	3.7	2.9	3.2			
8/11/2016	5.1	5.1	5.3			
8/25/2016	4.8	5.1	3.3			
9/7/2016	5.1	5.3	2.8			
9/20/2016	3.4	2.3	2.8			
10/13/2016	3.4	6.1	3.2			

Data	TPN (µg/L)			
Date	0.5 m	5 m	10 m	B-1
5/18/2016	442	514	585	601
6/8/2016	550	648	661	697
6/22/2016	628	619	715	1107
7/6/2016	827	853	1545	1475
7/20/2016	775	865	1690	1742
8/11/2016	522	573	1692	1755
8/25/2016	781	914	1811	1874
9/7/2016	904	1022	2103	2384
9/20/2016	1124	1140	1009	1817
10/13/2016	980	1210	1302	1442

Data	NO3+NO2 (µg/L)			
Date	0.5 m	5 m	10 m	B-1
5/18/2016	296	395	483	507
6/8/2016	445	521	552	543
6/22/2016	497	504	623	847
7/6/2016	607	672	1037	1007
7/20/2016	640	718	1297	1199
8/11/2016	487	503	1467	1598
8/25/2016	569	676	1494	1612
9/7/2016	561	525	1309	1418
9/20/2016	797	817	825	1552
10/13/2016	786	779	887	1017

Date	TP (µg/L)		
Date	0.5 m	4 m	B-1
5/18/2016	17.1	18.2	18.6
6/8/2016	8.8	10.4	10.4
6/22/2016	10.5	7.8	8.5
7/6/2016	9.9	20.3	12.8
7/20/2016	15.2	11.2	11.8
8/11/2016	18.2	27.0	10.8
8/25/2016	15.7	21.2	8.0
9/7/2016	18.4	27.9	9.7
9/20/2016	15.1	13.1	9.3
10/13/2016	10.5	11.3	11.1

Date	SRP (µg/L)		
Date	0.5 m	4 m	B-1
5/18/2016	1.0	1.0	1.2
6/8/2016	1.0	1.0	1.1
6/22/2016	1.0	1.0	1.0
7/6/2016	1.0	1.0	1.0
7/20/2016	1.0	1.0	4.5
8/11/2016	1.0	1.0	1.0
8/25/2016	1.0	1.0	1.4
9/7/2016	1.0	1.6	3.9
9/20/2016	1.0	1.0	4.5
10/13/2016	2.7	3.4	2.7

Date	Chl (µg/L)	
Date	0.5 m	4 m
5/18/2016	2.1	2.8
6/8/2016	2.7	2.7
6/22/2016	2.5	1.3
7/6/2016	3.1	3.2
7/20/2016	4.2	4.7
8/11/2016	6.9	14.4
8/25/2016	7.2	8.3
9/7/2016	10.7	9.2
9/20/2016	6.8	5.3
10/13/2016	1.6	1.4

Data	TPN (μg/L)			
Date	0.5 m	4 m	B-1	
5/18/2016	571	590	579	
6/8/2016	665	725	715	
6/22/2016	719	970	1053	
7/6/2016	894	1211	1743	
7/20/2016	749	884	1861	
8/11/2016	541	662	1788	
8/25/2016	646	725	2122	
9/7/2016	1033	1057	2620	
9/20/2016	783	1151	2109	
10/13/2016	1345	1338	1115	

Date	NO3+NO2 (μg/L)			
Date	0.5 m	4 m	B-1	
5/18/2016	517	520	521	
6/8/2016	564	560	555	
6/22/2016	592	865	892	
7/6/2016	655	835	1186	
7/20/2016	541	679	1576	
8/11/2016	443	475	1762	
8/25/2016	377	412	1814	
9/7/2016	416	436	1907	
9/20/2016	562	904	1894	
10/13/2016	871	948	916	

Date	ΤΡ (μ	g/L)
Date	0.5 m	B-1
5/18/2016	18.8	19.2
6/8/2016	8.6	8.7
6/22/2016	8.4	9.2
7/6/2016	9.8	8.5
7/20/2016	12.1	11.3
8/11/2016	16.4	10.5
8/25/2016	19.3	8.1
9/7/2016	20.1	7.9
9/20/2016	6.1	7.6
10/13/2016	12.0	11.3

Data	SRP (J	ıg/L)
Date	0.5 m	B-1
5/18/2016	1.0	1.0
6/8/2016	1.0	1.1
6/22/2016	1.0	1.0
7/6/2016	1.0	1.0
7/20/2016	1.0	4.0
8/11/2016	1.0	1.0
8/25/2016	1.0	2.4
9/7/2016	1.0	3.8
9/20/2016	3.5	3.4
10/13/2016	4.2	3.4

Date	Chl (µg/L)
Date	0.5 m
5/18/2016	2.8
6/8/2016	2.1
6/22/2016	2.0
7/6/2016	2.2
7/20/2016	2.9
8/11/2016	5.1
8/25/2016	5.6
9/7/2016	7.7
9/20/2016	2.8
10/13/2016	1.8

Date	TPN (μg/L)	
Date	0.5 m	B-1
5/18/2016	632	626
6/8/2016	727	715
6/22/2016	1051	1092
7/6/2016	1751	1706
7/20/2016	1097	1910
8/11/2016	590	1988
8/25/2016	761	2074
9/7/2016	1292	2755
9/20/2016	1888	1895
10/13/2016	1088	1199

Date	NO3+NO	2 (µg/L)
Date	0.5 m	B-1
5/18/2016	542	544
6/8/2016	633	609
6/22/2016	888	892
7/6/2016	1237	1353
7/20/2016	830	1632
8/11/2016	464	1745
8/25/2016	423	1853
9/7/2016	533	2317
9/20/2016	1061	1706
10/13/2016	943	901

APPENDIX III – Lake Spokane Phytoplankton Data

(This Page Intentionally Left Blank)


Avista Phytoplankton 2016 (Batch 1) Taxa Report with Biovolumes

			Volume														mL (in Ce	llspermL		
Eco An al ysts			Received	d Pe	ercent							Number of	Cellsper N	umber of	Units /	Cells/	sample (in sample		Biovolume
Sample ID	Site ID	Collection Date	(mL)	Co	ounted Taxon	Division	Class	Order	Family	Genus	Species	Natural Units Nat	ural Unit	Cells	Sample	sample	received)	received)	AVG_BV (µ³)	(µ²/mL)
7475.01-01	LL0-0.5M	5/17/2016		475	0.0463% Asterionella formosa	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Asterionella	formosa	170	4.00	680	367473	1469894	774	3095	1413.72	4374766.60
7475.01-01	LL0-0.5M	5/17/2016		475	0.0463% Aulacoseira sp.	Bacillariophyta	Bacillariophyceae	Centrales	Aulacoseiraceae	Aulacoseira	sp.	7	5.00	35	15131	75656	32	159	431.97	68802.48
7475.01-01 7475.01-01	LL0-0.5M LL0-0.5M	5/17/2016		475 475	0.0463% Chroomonas spp. 0.0463% Cocconeis sp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Chroomonas	spp.	5	1.00 1.00	5 1	10808 2162	10808 2162	23 5	23 5	207.35 1347.74	4717.88 6133.25
7475.01-01	LL0-0.5M	5/17/2016 5/17/2016		475 475	0.0463% Coccories sp. 0.0463% Cryptomonas spp.	Bacillariophyta Cryptophyta	Bacillariophyceae Cryptophyceae	Pennales Cryptomonadales	Achnanthaceae Cryptomonadaceae	Cocconeis Cryptomonas	sp. spp.	20	1.00	20	43232	43232	91	э 91	636.17	57901.35
7475.01-01	LL0-0.5M	5/17/2016		475	0.0463% Dinobryon spp.	Chrysophyta	Chrysophyceae	Chrysomonadales	Dinobryaceae	Dinobryon	spp.	6	1.00	6	12970	12970	27	27	3804.99	103893.53
7475.01-01	LL0-0.5M	5/17/2016		475	0.0463% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Fragilaria	spp.	38	1.26	48	82141	103757	173	218	439.82	96073.29
7475.01-01	LL0-0.5M	5/17/2016		475	0.0463% Monoraphidium spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Selenastraceae	Monoraphidium	spp.	10	1.00	10	21616	21616	46	46	143.99	6552.63
7475.01-01	LL0-0.5M	5/17/2016		475	0.0463% Pseudokephyrion spp.	Chrysophyta	Chrysophyceae	Chrysomonadales	Dinobryaceae	Pseudokephyrion	spp.	7	1.00	7	15131	15131	32	32	335.10	10674.80
7475.01-01	LL0-0.5M	5/17/2016		475	0.0463% Scenedesmus sp.	Chlorophyta	Chlorophyceae	Chlorococcales	Scenedesmaceae	Scenedesmus	sp.	9	4.00	36	19454	77818	41	164	117.81	19300.48
7475.01-01	LL0-0.5M	5/17/2016		475	0.0463% Unknown centrales spp.	Bacillariophyta	Bacillariophyceae	Centrales	Achaetheeeee	Ashaathaa		35	1.00	35 5	75656	75656	159	159 20	475.17	75682.75
7475.01-02 7475.01-02	LL1-0.5M LL1-0.5M	5/17/2016 5/17/2016		525 525	0.0483% Achnanthes spp. 0.0483% Amphora sp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Bacillariophyceae	Pennales Pennales	Achnanthaceae Catenulaceae	Achnanthes Amphora	spp. sp.	о 3	1.00 1.00	э 3	10353 6212	10353 6212	20 12	20 12	235.62 1792.00	4646.39 21202.87
7475.01-02	LL1-0.5M	5/17/2016		525	0.0483% Asterionella formosa	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Asterionella	formosa	218	6.42	1400	451389	2898830	860	5522	973.89	5377435.13
7475.01-02	LL1-0.5M	5/17/2016		525	0.0483% Aulacoseira sp.	Bacillariophyta	Bacillariophyceae	Centrales	Aulacoseiraceae	Aulacoseira	sp.	8	8.00	64	16565	132518	32	252	480.66	121326.88
7475.01-02	LL1-0.5M	5/17/2016		525	0.0483% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	21	1.00	21	43482	43482	83	83	1357.17	112405.71
7475.01-02	LL1-0.5M	5/17/2016		525	0.0483% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Fragilaria	spp.	16	2.44	39	33129	80753	63	154	999.03	153665.67
7475.01-02	LL1-0.5M	5/17/2016		525	0.0483% Pseudokephyrion spp.	Chrysophyta	Chrysophyceae	Chrysomonadales	Dinobryaceae	Pseudokephyrion	spp.	10	1.00	10	20706	20706	39	39	301.59	11894.79
7475.01-02 7475.01-02	LL1-0.5M LL1-0.5M	5/17/2016 5/17/2016		525 525	0.0483% Scenedesmus sp. 0.0483% Unknown centrales spp.	Chlorophyta Bacillariophyta	Chlorophyceae Bacillariophyceae	Chlorococcales Centrales	Scenedesmaceae	Scenedesmus	sp.	9	4.44 1.00	40 16	18635 33129	82824 33129	35 63	158 63	158.39 565.49	24987.37 35684.37
7475.01-02	LL1-0.5M	5/17/2016		525 525	0.0483% Unknown Dinoflagellate sp.	Pyrrhophyta	Dinophyceae	Centrales				10	1.00	10	2071	2071	4	4	12770.05	50364.91
7475.01-02	LL2-0.5M	5/17/2016		475	0.0555% Asterionella formosa	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Asterionella	formosa	215	6.98	1500	387288	2702011	815	5688	1376.02	7827401.71
7475.01-03	LL2-0.5M	5/17/2016		475	0.0555% Aulacoseira sp.	Bacillariophyta	Bacillariophyceae	Centrales	Aulacoseiraceae	Aulacoseira	sp.	9	7.22	65	16212	117087	34	246	923.63	227673.61
7475.01-03	LL2-0.5M	5/17/2016		475	0.0555% Chroomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Chroomonas	spp.	10	1.00	10	18013	18013	38	38	158.39	6006.58
7475.01-03	LL2-0.5M	5/17/2016		475	0.0555% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	27	1.00	27	48636	48636	102	102	2360.38	241684.33
7475.01-03	LL2-0.5M	5/17/2016		475	0.0555% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Fragilaria	spp.	21	1.81	38	37828	68451	80	144	691.15	99599.73
7475.01-03	LL2-0.5M LL2-0.5M	5/17/2016		475	0.0555% Nitzschia spp.	Bacillariophyta	Bacillariophyceae	Pennales	Bacillariaceae	Nitzschia	spp.	8	1.00 24.00	8 24	14411 1801	14411 43232	30 4	30 91	578.05	17537.19 36041.98
7475.01-03 7475.01-03	LL2-0.5M	5/17/2016 5/17/2016		475 475	0.0555% Pediastrum sp. 0.0555% Pseudokephyrion spp.	Chlorophyta Chrysophyta	Chlorophyceae Chrysophyceae	Chlorococcales Chrysomonadales	Hydrodictyaceae Dinobryaceae	Pediastrum Pseudokephyrion	sp. spp.	0	24.00	24	16212	43232	4 34	34	396.00 150.80	5146.77
7475.01-03	LL2-0.5M	5/17/2016		475	0.0555% Scenedesmus sp.	Chlorophyta	Chlorophyceae	Chlorococcales	Scenedesmaceae	Scenedesmus	spp.	9	4.89	44	16212	79259	34	167	95.43	15922.88
7475.01-04	LL3-0.5M	5/18/2016		490	0.0375% Achnanthes spp.	Bacillariophyta	Bacillariophyceae	Pennales	Achnanthaceae	Achnanthes	spp.	4	1.00	4	10657	10657	22	22	204.20	4441.42
7475.01-04	LL3-0.5M	5/18/2016		490	0.0375% Asterionella formosa	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Asterionella	formosa	208	6.49	1350	554188	3596895	1131	7341	1217.37	8936207.39
7475.01-04	LL3-0.5M	5/18/2016		490	0.0375% Cocconeis sp.	Bacillariophyta	Bacillariophyceae	Pennales	Achnanthaceae	Cocconeis	sp.	3	1.00	3	7993	7993	16	16	1470.27	23983.62
7475.01-04	LL3-0.5M	5/18/2016		490	0.0375% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	48	1.00	48	127890	127890	261	261	2360.38	616058.08
7475.01-04	LL3-0.5M	5/18/2016		490	0.0375% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Fragilaria	spp.	21	1.57	33	55952	87924	114	179	772.83	138674.62
7475.01-04 7475.01-04	LL3-0.5M LL3-0.5M	5/18/2016 5/18/2016		490 490	0.0375% Pseudokephyrion spp. 0.0375% Scenedesmus sp.	Chrysophyta Chlorophyta	Chrysophyceae Chlorophyceae	Chrysomonadales Chlorococcales	Dinobryaceae Scenedesmaceae	Pseudokephyrion Scenedesmus	spp. sp.	17 14	1.00 5.14	17 72	45294 37301	45294 191834	92 76	92 391	335.10 254.40	30975.99 99598.86
7475.01-04	LL4-0.5M	5/18/2016		500	0.0964% Achnanthes spp.	Bacillariophyta	Bacillariophyceae	Pennales	Achnanthaceae	Achnanthes	spp.	3	1.00	3	3111	3111	6	6	226.20	1407.58
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Amphora sp.	Bacillariophyta	Bacillariophyceae	Pennales	Catenulaceae	Amphora	sp.	10	1.00	10	10371	10371	21	21	975.00	20224.28
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Asterionella formosa	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Asterionella	formosa	167	3.89	650	173203	674143	346	1348	0.00	0.00
7475.01-05	LL4-0.5M	5/18/2016	i	500	0.0964% Aulacoseira sp.	Bacillariophyta	Bacillariophyceae	Centrales	Aulacoseiraceae	Aulacoseira	sp.	4	6.25	25	4149	25929	8	52	763.21	39577.93
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Botryococcus sp.	Chlorophyta	Chlorophyceae	Chlorococcales	Oocystaceae	Botryococcus	sp.	2	14.00	28	2074	29040	4	58	50.27	2919.39
7475.01-05	LL4-0.5M LL4-0.5M	5/18/2016		500	0.0964% Closterium sp.	Chlorophyta	Chlorophyceae	Zygnematales	Desmidiaceae	Closterium	sp.	1	1.00 1.00	1 6	1037 6223	1037 6223	2 12	2 12	31299.16 1960.35	64923.39 24398.00
7475.01-05 7475.01-05	LL4-0.5M	5/18/2016 5/18/2016		500 500	0.0964% Cryptomonas spp. 0.0964% Cymbella sp.	Cryptophyta Bacillariophyta	Cryptophyceae Bacillariophyceae	Cryptomonadales Pennales	Cryptomonadaceae Cymbellaceae	Cryptomonas Cymbella	spp. sp.	0	1.00	0 1	6223 1037	1037	2	2	720.00	24398.00 1493.49
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Dinobryon spp.	Chrysophyta	Chrysophyceae	Chrysomonadales	Dinobryaceae	Dinobryon	sp. spp.	16	1.00	16	16594	16594	33	33	1738.87	57710.66
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Fragilaria	spp.	17	1.94	33	17631	34226	35	68	942.48	64513.95
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Gomphonema spp.	Bacillariophyta	Bacillariophyceae	Pennales	Gomphonemataceae	Gomphonema	spp.	16	1.00	16	16594	16594	33	33	1960.35	65061.33
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Monoraphidium spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Selenastraceae	Monoraphidium	spp.	6	1.00	6	6223	6223	12	12	127.63	1588.41
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Nitzschia spp.	Bacillariophyta	Bacillariophyceae	Pennales	Bacillariaceae	Nitzschia	spp.	24	1.00	24	24891	24891	50	50	486.95	24241.61
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Pediastrum sp.	Chlorophyta	Chlorophyceae	Chlorococcales	Hydrodictyaceae	Pediastrum	sp.	1	32.00 10.00	32	1037 4149	33189	2	66 83	1152.00	76466.45
7475.01-05 7475.01-05	LL4-0.5M LL4-0.5M	5/18/2016 5/18/2016		500 500	0.0964% Planktolyngbya spp. 0.0964% Pseudokephyrion spp.	Cyanophyta Chrysophyta	Myxophyceae Chrysophyceae	Oscillatoriales Chrysomonadales	Pseudanabaenaceae Dinobryaceae	Planktolyngbya Pseudokephyrion	spp. spp.	4	10.00	40 8	4149 8297	41486 8297	8 17	83 17	9.43 150.80	782.01 2502.35
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Rhoicosphenia spp.	Bacillariophyta	Bacillariophyceae	Pennales	Rhoicospheniaceae	Rhoicosphenia	spp.	2	1.00	2	2074	2074	4	4	903.21	3747.02
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Scenedesmus sp.	Chlorophyta	Chlorophyceae	Chlorococcales	Scenedesmaceae	Scenedesmus	sp.	3	4.00	12	3111	12446	6	25	44.90	1117.60
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Synedra sp.	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Synedra	sp.	3	1.00	3	3111	3111	6	6	7657.63	47652.34
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Tabellaria spp.	Bacillariophyta	Bacillariophyceae	Pennales	Tabellariaceae	Tabellaria	sp.	3	2.00	6	3111	6223	6	12	8064.00	100362.21
7475.01-05	LL4-0.5M	5/18/2016		500	0.0964% Unknown centrales spp.	Bacillariophyta	Bacillariophyceae	Centrales				7	1.00	7	7260	7260	15	15	314.16	4561.59
7475.01-06	LL5-0.5M	5/18/2016		500	0.0603% Amphora sp.	Bacillariophyta	Bacillariophyceae	Pennales	Catenulaceae	Amphora	sp.	16	1.00	16	26551	26551	53	53	480.00	25488.82
7475.01-06 7475.01-06	LL5-0.5M LL5-0.5M	5/18/2016 5/18/2016		500 500	0.0603% Asterionella formosa	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Asterionella	formosa	121 5	8.26 6.20	1000 31	200791 8297	1659428 51442	402 17	3319 103	1162.39 1193.02	3857801.93 122743.32
7475.01-06	LL5-0.5M	5/18/2016		500	0.0603% Aulacoseira sp. 0.0603% Cocconeis sp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Bacillariophyceae	Centrales Pennales	Aulacoseiraceae Achnanthaceae	Aulacoseira Cocconeis	sp. sp.	15	1.00	15	24891	24891	50	50	1347.74	67094.48
7475.01-06	LL5-0.5M	5/18/2016		500	0.0603% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	sp. spp.	13	1.00	13	24091	24091	43	43	2566.16	110717.22
7475.01-06	LL5-0.5M	5/18/2016		500	0.0603% Dinobryon spp.	Chrysophyta	Chrysophyceae	Chrysomonadales	Dinobryaceae	Dinobryon	spp.	10	1.00	10	18254	18254	37	37	1541.48	56275.27
7475.01-06	LL5-0.5M	5/18/2016		500	0.0603% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Pennales	Fragilariaceae	Fragilaria	spp.	47	1.66	78	77993	129435	156	259	1036.73	268378.07
7475.01-06	LL5-0.5M	5/18/2016		500	0.0603% Gomphonema spp.	Bacillariophyta	Bacillariophyceae	Pennales	Gomphonemataceae	Gomphonema	spp.	22	1.00	22	36507	36507	73	73	714.71	52184.58
7475.01-06	LL5-0.5M	5/18/2016		500	0.0603% Melosira sp.	Bacillariophyta	Bacillariophyceae	Centrales	Melosiraceae	Melosira	sp.	8	4.00	32	13275	53102	27	106	10386.89	1103123.12
7475.01-06	LL5-0.5M	5/18/2016		500	0.0603% Nitzschia spp.	Bacillariophyta	Bacillariophyceae	Pennales	Bacillariaceae	Nitzschia	spp.	17	1.00	17	28210	28210	56	56	769.69	43426.34
7475.01-06	LL5-0.5M	5/18/2016		500	0.0603% Scenedesmus sp.	Chlorophyta Bacillariophyta	Chlorophyceae	Chlorococcales	Scenedesmaceae	Scenedesmus	sp.	12	4.00	48 2	19913 3319	79653	40 7	159 7	307.88	49046.22
7475.01-06 7475.01-06	LL5-0.5M LL5-0.5M	5/18/2016 5/18/2016		500 500	0.0603% Synedra sp. 0.0603% Tabellaria spp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Bacillariophyceae	Pennales Pennales	Fragilariaceae Tabellariaceae	Synedra Tabellaria	sp. sp.	۲ ۲	1.00 1.00	2	3319 6638	3319 6638	13	13	4594.58 1872.00	30497.49 24851.60
7475.01-06	LL5-0.5M	5/18/2016		500	0.0603% Unknown centrales spp.	Bacillariophyta	Bacillariophyceae	Centrales			о р .	- 8	1.00	4	13275	13275	13 27	27	519.35	13789.05
	0.0.0	3, 13, 2010										°,		č					0.0.00	

			Volume									Number of					Units per mL	Cells per mL		
EcoAnalysts Sample ID	Site ID	Collection Date	Received (mL)	Perce Cour		Division	Class	Order	Family	Genus	Species	Natural Units	Cells per Natural Unit		Jnits / Sample	Cells/ sample	(in sample received)	(in sample received)	AVG_BV (µ³)	Biovolume (µ³/mL)
7475.03-01	LL0-0.5M	6/7/2016		560	0.23% Asterionella formosa	Bacillariophyta	Fragilariophyceae	Tabellariales	Tabellariaceae	Asterionella	formosa	85	4.235294118	360	36861.44	156119.04	65.824	278.784	989.602	275885.204
7475.03-01 7475.03-01	LL0-0.5M LL0-0.5M	6/7/2016 6/7/2016		560 560	0.23% Coelastrum sp. 0.23% Elakatothrix sp.	Chlorophyta Charophyta	Chlorophyceae Klebsormidiophyceae	Scenedesmaceae Klebsormidiales	Coelastroideae Elakatotrichaceae	Coelastrum Elakatothrix	sp. sp.	1 24	16 4	16 96	433.664 10407.936	6938.624 41631.744	0.7744 18.5856	12.3904 74.3424	113.097 2042.035	1401.317069 151809.7828
7475.03-01	LL0-0.5M	6/7/2016		560	0.23% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	112	1.267857143	142	48570.368	61580.288	86.7328	109.9648	282.743	31091.77745
7475.03-01	LL0-0.5M	6/7/2016		560	0.23% Monoraphidium spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Selenastraceae	Monoraphidium	spp.	10	1	10	4336.64	4336.64	7.744	7.744	146.084	1131.274496
7475.03-01 7475.03-01	LL0-0.5M LL0-0.5M	6/7/2016 6/7/2016		560 560	0.23% Pandorina sp. 0.23% Scenedesmus sp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Chlamydomonadales Sphaeropleales	Volvocaceae Scenedesmaceae	Pandorina Scenedesmus	sp. sp.	/	12 16	84 48	3035.648 1300.992	36427.776 20815.872	5.4208 2.3232	65.0496 37.1712	245.044 143.99	15940.01418 5352.281088
7475.03-01	LL0-0.5M	6/7/2016		560	0.23% Sphaerocystis sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	sp.	9	12	108	3902.976	46835.712	6.9696	83.6352	381.704	31923.89038
7475.03-01	LL0-0.5M	6/7/2016		560	0.23% Unknown centrales spp.	Bacillariophyta	Bacillariophyceae	Centrales				6	1	6	2601.984	2601.984	4.6464	4.6464	201.062	934.2144768
7475.03-01 7475.03-02	LL0-0.5M LL1-0.5M	6/7/2016 6/7/2016		560 580	0.23% Unknown Chlorophyte sp. 0.38% Asterionella formosa	Chlorophyta Bacillariophyta	Chlorophyceae Fragilariophyceae	Tabellariales	Tabellariaceae	Asterionella	formosa	46 141	8 4	368 564	19948.544 37498.28586	159588.352 149993.1434	35.6224 64.65221699	284.9792 258.608868	268.083 1005.31	76398.07887 259982.0811
7475.03-02	LL1-0.5M	6/7/2016		580	0.38% Botryococcus sp.	Chlorophyta	Trebouxiophyceae	Trebouxiales	Botryococcaceae	Botryococcus	sp.	4	15	60	1063.781159	15956.71739	1.834105447	27.5115817	117.81	3241.13944
7475.03-02	LL1-0.5M	6/7/2016		580	0.38% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	30	1	30	7978.358693	7978.358693	13.75579085	13.75579085	2123.717	29213.40688
7475.03-02 7475.03-02	LL1-0.5M LL1-0.5M	6/7/2016 6/7/2016		580 580	0.38% Elakatothrix sp. 0.38% Fragilaria spp.	Charophyta Bacillariophyta	Klebsormidiophyceae Bacillariophyceae	Klebsormidiales Fragilariales	Elakatotrichaceae Fragilariaceae	Elakatothrix Fragilaria	sp. spp.	14 59	4 1.338983051	56 79	3723.234057 15690.7721	14892.93623 21009.67789	6.419369063 27.05305534	25.67747625 36.22358257	1654.049 659.734	42471.80392 23897.92902
7475.03-02	LL1-0.5M	6/7/2016		580	0.38% Gymnodinium sp.	Miozoa	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Gymnodinium	spp.	15	1.000000001	15	3989.179346	3989.179346	6.877895425	6.877895425	8143.008	56006.75747
7475.03-02	LL1-0.5M	6/7/2016		580	0.38% Monoraphidium spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Selenastraceae	Monoraphidium	spp.	2	1	2	531.8905795	531.8905795	0.917052723	0.917052723	131.947	121.0023557
7475.03-02 7475.03-02	LL1-0.5M LL1-0.5M	6/7/2016 6/7/2016		580 580	0.38% Scenedesmus sp. 0.38% Tetraëdron sp.	Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Sphaeropleales	Scenedesmaceae	Scenedesmus	sp. sp.	32	8	256	8510.249272 265.9452898	68081.99418 265.9452898	14.67284357 0.458526362	117.3827486 0.458526362	174.227 845	20451.24414 387.4547756
7475.03-02	LL1-0.5M	6/7/2016		580	0.38% Unknown centrales spp.	Chlorophyta Bacillariophyta	Bacillariophyceae	Centrales	Hydrodictyaceae	Tetraëdron	sp.	6	1	6	1595.671739	1595.671739	2.75115817	2.75115817	115.454	317.6322153
7475.03-03	LL2-0.5M	6/7/2016	5	550	0.65% Asterionella formosa	Bacillariophyta	Fragilariophyceae	Tabellariales	Tabellariaceae	Asterionella	formosa	134	3.701492537	496	20579.31284	76174.17289	37.41693243	138.4984962	967.611	134012.6684
7475.03-03	LL2-0.5M	6/7/2016		550	0.65% Aulacoseira sp.	Bacillariophyta	Coscinodiscophyceae	Aulacoseirales	Aulacoseiraceae	Aulacoseira	sp.	1	12	12	153.5769615	1842.923538	0.279230839	3.350770068	1193.02	3997.535707
7475.03-03 7475.03-03	LL2-0.5M LL2-0.5M	6/7/2016 6/7/2016		550 550	0.65% Cryptomonas spp. 0.65% Dinobryon spp.	Cryptophyta Ochrophyta	Cryptophyceae Chrysophyceae	Cryptomonadales Chromulinales	Cryptomonadaceae Dinobryaceae	Cryptomonas Dinobryon	spp. spp.	57 3	1	57 18	8753.886804 460.7308844	8753.886804 2764.385306	15.91615783 0.837692517	15.91615783 5.026155103	3063.053 1273.392	48752.03497 6400.265699
7475.03-03	LL2-0.5M	6/7/2016		550	0.65% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	37	1.405405405	52	5682.347574	7986.001997	10.33154104	14.52000363	816.814	11860.14225
7475.03-03	LL2-0.5M	6/7/2016		550	0.65% Monoraphidium spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Selenastraceae	Monoraphidium	spp.	5	1	5	767.8848074	767.8848074	1.396154195	1.396154195	134.696	188.0563855
7475.03-03 7475.03-03	LL2-0.5M LL2-0.5M	6/7/2016 6/7/2016		550 550	0.65% Pandorina sp. 0.65% Scenedesmus sp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Chlamydomonadales Sphaeropleales	Volvocaceae Scenedesmaceae	Pandorina Scenedesmus	sp. sp.	3	16 8	48 392	460.7308844 7525.271112	7371.694151 60202.1689	0.837692517 13.68231111	13.40308027 109.4584889	720.996 245.044	9663.567265 26822.14595
7475.03-03	LL2-0.5M	6/7/2016		550	0.65% Sphaerocystis sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	sp.		18	18	153.5769615	2764.385306	0.279230839	5.026155103	220.893	1110.242479
7475.03-03	LL2-0.5M	6/7/2016		550	0.65% Unknown centrales spp.	Bacillariophyta	Bacillariophyceae	Centrales				11	1	11	1689.346576	1689.346576	3.071539229	3.071539229	254.469	781.6115162
7475.03-04 7475.03-04	LL3-0.5M LL3-0.5M	6/8/2016 6/8/2016		520 520	0.36% Achnanthes spp.	Bacillariophyta	Bacillariophyceae Fragilariophyceae	Mastogloiales	Achnanthaceae	Achnanthes	spp. formosa	3 167	1 6.586826347	3 1100	823.6798353 45851.51083	823.6798353 302015.9396	1.583999683 88.17598236	1.583999683 580.7998838	212.058 1240.929	335.8998048 720731.4191
7475.03-04	LL3-0.5M	6/8/2016		520 520	0.36% Asterionella formosa 0.36% Aulacoseira sp.	Bacillariophyta Bacillariophyta	Coscinodiscophyceae	Tabellariales Aulacoseirales	Tabellariaceae Aulacoseiraceae	Asterionella Aulacoseira	SD.	6	0.500020347	60	45651.51083	16473.59671	3.167999366	31.67999366	2162.987	68523.41446
7475.03-04	LL3-0.5M	6/8/2016		520	0.36% Cocconeis sp.	Bacillariophyta	Bacillariophyceae	Cocconeidales	Cocconeidaceae	Cocconeis	sp.	3	1	3	823.6798353	823.6798353	1.583999683	1.583999683	452.389	716.5840327
7475.03-04	LL3-0.5M	6/8/2016		520	0.36% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	9	1	9	2471.039506	2471.039506	4.75199905	4.75199905	3298.672	15675.28621
7475.03-04 7475.03-04	LL3-0.5M LL3-0.5M	6/8/2016 6/8/2016		520 520	0.36% Dictyosphaerium spp. 0.36% Fragilaria spp.	Chlorophyta Bacillariophyta	Trebouxiophyceae Bacillariophyceae	Chlorellales Fragilariales	Chlorellaceae Fragilariaceae	Dictyosphaerium Fragilaria	spp. spp.	2 50	16 1.5	32 75	549.1198902 13727.99725	8785.918243 20591.99588	1.055999789 26.39999472	16.89599662 39.59999208	30.206 829.38	510.3604739 32843.44143
7475.03-04	LL3-0.5M	6/8/2016		520	0.36% Gymnodinium spp.	Miozoa	Dinophyceae	Gymnodiniales	Gymnodiniaceae	Gymnodinium	spp.	2	1.0	2	549.1198902	549.1198902	1.055999789	1.055999789	2002.765	2114.919417
7475.03-04	LL3-0.5M	6/8/2016		520	0.36% Monoraphidium spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Selenastraceae	Monoraphidium	spp.	4	1	4	1098.23978	1098.23978	2.111999578	2.111999578	85.085	179.6994841
7475.03-04 7475.03-04	LL3-0.5M LL3-0.5M	6/8/2016 6/8/2016		520 520	0.36% Pediastrum sp. 0.36% Scenedesmus sp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Sphaeropleales	Hydrodictyaceae Scenedesmaceae	Pediastrum Scenedesmus	sp. sp.	1 36	8 4 55555556	8 164	274.5599451 9884.158023	2196.479561 45027.83099	0.527999894 19.0079962	4.223999155 86.59198268	504 130.9	2128.895574 11334.89053
7475.03-04	LL3-0.5M	6/8/2016		520	0.36% Synedra sp.	Bacillariophyta	Fragilariophyceae	Licmophorales	Ulnariaceae	Synedra	sp.	12	4.0000000000000000000000000000000000000	12	3294.719341	3294.719341	6.335998733	6.335998733	8933.904	56605.20442
7475.03-04	LL3-0.5M	6/8/2016		520	0.36% Unknown centrales spp.	Bacillariophyta	Bacillariophyceae	Centrales				6	1	6	1647.359671	1647.359671	3.167999366	3.167999366	198.804	629.810946
7475.03-05 7475.03-05	LL4-0.5M LL4-0.5M	6/8/2016 6/8/2016		550 550	0.20% Achnanthes spp.	Bacillariophyta	Bacillariophyceae	Mastogloiales	Achnanthaceae	Achnanthes Asterionella	spp. formosa	18 134	1	18	8984.252246 66882.76672	8984.252246 401296.6003	16.33500408 121.6050304	16.33500408 729.6301824	414.69 741.416	6773.962843 540959.4913
7475.03-05	LL4-0.5M	6/8/2016		550 550	0.20% Asterionella formosa 0.20% Cocconeis sp.	Bacillariophyta Bacillariophyta	Fragilariophyceae Bacillariophyceae	Tabellariales Cocconeidales	Tabellariaceae Cocconeidaceae	Cocconeis	sp.	134	0	004 1	499.1251248	499.1251248	0.907500227	0.907500227	477.522	433.3513233
7475.03-05	LL4-0.5M	6/8/2016	5	550	0.20% Cymbella sp.	Bacillariophyta		Cymbellales	Cymbellaceae	Cymbella	sp.	32	1	32	15972.00399	15972.00399	29.04000726	29.04000726	1326	38507.04963
7475.03-05	LL4-0.5M	6/8/2016		550	0.20% Fragilaria spp.	Bacillariophyta		Fragilariales	Fragilariaceae	Fragilaria	spp.	45	1.4	63	22460.63062	31444.88286	40.83751021	57.17251429	1149.823	65738.2719
7475.03-05 7475.03-05	LL4-0.5M LL4-0.5M	6/8/2016 6/8/2016		550 550	0.20% Gomphonema spp. 0.20% Melosira sp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Coscinodiscophyceae	Cymbellales Melosirales	Gomphonemataceae Melosiraceae	Gomphonema Melosira	spp. sp.	11 8	1	11 8	5490.376373 3993.000998	5490.376373 3993.000998	9.982502496 7.260001815	9.982502496 7.260001815	1229.934 9110.619	12277.81922 66143.11048
7475.03-05	LL4-0.5M	6/8/2016		550	0.20% Navicula spp.	Bacillariophyta	Bacillariophyceae	Naviculales	Naviculaceae	Navicula	spp.	8	1	8	3993.000998	3993.000998	7.260001815	7.260001815	628.319	4561.59708
7475.03-05	LL4-0.5M	6/8/2016		550	0.20% Nitzschia spp.	Bacillariophyta		Bacillariales	Bacillariaceae	Nitzschia	spp.	6	1	6	2994.750749	2994.750749	5.445001361	5.445001361	12440.707	67739.66655
7475.03-05 7475.03-05	LL4-0.5M LL4-0.5M	6/8/2016 6/8/2016		550 550	0.20% Pediastrum sp. 0.20% Scenedesmus sp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Sphaeropleales	Hydrodictyaceae Scenedesmaceae	Pediastrum Scenedesmus	sp. sp.	6 5	8	48 20	2994.750749 2495.625624	23958.00599 9982.502496	5.445001361 4.537501134	43.56001089 18.15000454	672 142.55	29272.32732 2587.283147
7475.03-05	LL4-0.5M	6/8/2016		550	0.20% Synedra sp.			Licmophorales	Ulnariaceae	Synedra	sp.	18	1	18	8984.252246	8984.252246	16.33500408	16.33500408	8293.805	135479.3385
7475.03-05	LL4-0.5M	6/8/2016		550	0.20% Tabellaria spp.		Fragilariophyceae	Tabellariales	Tabellariaceae	Tabellaria	sp.	2	1	2	998.2502496	998.2502496	1.815000454	1.815000454	7700	13975.50349
7475.03-05 7475.03-06	LL4-0.5M LL5-0.5M	6/8/2016 6/8/2016		550 500	0.20% Unknown centrales spp. 0.33% Achnanthes spp.	Bacillariophyta Bacillariophyta		Centrales Mastogloiales	Achnanthaceae	Achnanthes	son	13 10	1	13 10	6488.626622 3025	6488.626622 3025	11.79750295 6.05	11.79750295 6.05	475.166 301.593	5605.772286 1824.63765
7475.03-06	LL5-0.5M	6/8/2016		500	0.33% Amphora sp.	Bacillariophyta		Thalassiophysales	Catenulaceae	Amphora	spp. sp.	23	1	23	6957.5	6957.5	13.915	13.915	567	7889.805
7475.03-06	LL5-0.5M	6/8/2016	5	500	0.33% Asterionella formosa		Fragilariophyceae	Tabellariales	Tabellariaceae	Asterionella	formosa	153	6	918	46282.5	277695	92.565	555.39	942.478	523442.8564
7475.03-06	LL5-0.5M	6/8/2016		500	0.33% Aulacoseira sp.	Bacillariophyta		Aulacoseirales	Aulacoseiraceae	Aulacoseira	sp.	5	6	30	1512.5	9075	3.025	18.15	424.115	7697.68725
7475.03-06 7475.03-06	LL5-0.5M LL5-0.5M	6/8/2016 6/8/2016		500 500	0.33% Cocconeis sp. 0.33% Cymbella sp.	Bacillariophyta Bacillariophyta		Cocconeidales Cymbellales	Cocconeidaceae Cymbellaceae	Cocconeis Cymbella	sp. sp.	э 4	1	5 4	1512.5 1210	1512.5 1210	3.025 2.42	3.025 2.42	1693.318 400	5122.28695 968
7475.03-06	LL5-0.5M	6/8/2016	5	500	0.33% Dinobryon spp.	Ochrophyta	Chrysophyceae	Chromulinales	Dinobryaceae	Dinobryon	spp.	3	5	15	907.5	4537.5	1.815	9.075	3920.708	35580.4251
7475.03-06	LL5-0.5M	6/8/2016		500	0.33% Fragilaria spp.	Bacillariophyta		Fragilariales	Fragilariaceae	Fragilaria	spp.	34	1.588235294	54	10285	16335	20.57	32.67	973.894	31817.11698
7475.03-06 7475.03-06	LL5-0.5M LL5-0.5M	6/8/2016 6/8/2016		500 500	0.33% Gomphonema spp. 0.33% Melosira sp.	Bacillariophyta Bacillariophyta		Cymbellales Melosirales	Gomphonemataceae Melosiraceae	Gomphonema Melosira	spp. sp.	/ 4	1	7 12	2117.5 1210	2117.5 3630	4.235 2.42	4.235 7.26	1781.283 18653.206	7543.733505 135422.2756
7475.03-06	LL5-0.5M	6/8/2016		500	0.33% Monoraphidium spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Selenastraceae	Monoraphidium	sp. spp.	2	1	2	605	605	1.21	1.20	146.084	176.76164
7475.03-06	LL5-0.5M	6/8/2016	5	500	0.33% Navicula spp.	Bacillariophyta	Bacillariophyceae	Naviculales	Naviculaceae	Navicula	spp.	6	1	6	1815	1815	3.63	3.63	1083.849	3934.37187
7475.03-06 7475.03-06	LL5-0.5M LL5-0.5M	6/8/2016 6/8/2016		500 500	0.33% Roya spp. 0.33% Synedra sp.	Charophyta Bacillariophyta	Conjugatophyceae Fragilariophyceae	Zygnematales Licmophorales	Mesotaeniaceae Ulnariaceae	Roya Synedra	spp. sp.	5 10	1	5 10	1512.5 3025	1512.5 3025	3.025 6.05	3.025 6.05	9954.922 11506.868	30113.63905 69616.5514
7475.03-06	LL5-0.5M	6/8/2016		500	0.33% Tabellaria spp.	Bacillariophyta		Tabellariales	Tabellariaceae	Tabellaria	sp. sp.	2	1	2	5025 605	605	1.21	1.21	880	1064.8
7475.03-06	LL5-0.5M	6/8/2016	5	500	0.33% Teilingia sp.	Charophyta	Conjugatophyceae	Desmidiales	Desmidiaceae	Teilingia	sp.	4	2	8	1210	2420	2.42	4.84	1884.956	9123.18704
7475.03-06	LL5-0.5M	6/8/2016		500 500	0.33% Tetraëdron sp.	Chlorophyta Bacillariophyta	Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Tetraëdron	sp.	1 22	1	1 22	302.5 6655	302.5 6655	0.605	0.605	400 622 035	242 8270 28585
7475.03-06	LL5-0.5M	6/8/2016	5	000	0.33% Unknown centrales spp.	Bacillariophyta	Bacillariophyceae	Centrales				22	1	22	6699	6600	13.31	13.31	622.035	8279.28585

															Units pe	er Cells per		
EcoAnalysts			/olume Received Per	cent							Number of Natural	Cells per Natural N	Number	Units / Cel	mL (i s/ sampl	. `.		Biovolume
Sample ID			mL) Cou	unted Taxon	Division	Class	Order	Family	Genus	Species	Units			Sample samp		d) received)	_ u /	(µ³/mL)
7475.05-01 7475.05-01	LL0-0.5M LL0-0.5M	6/21/2016 6/21/2016	542 542	1.18% Asterionella formosa 1.18% Aulacoseira sp.	Bacillariophyta Bacillariophyta	Fragilariophyceae Coscinodiscophyceae	Tabellariales Aulacoseirales	Tabellariaceae Aulacoseiraceae	Asterionella Aulacoseira	formosa	28	4.00 7.75	112 31	2370 948 339 262		4 17 1 5	816.81 1357.17	14289.67 6571.68
7475.05-01	LL0-0.5M	6/21/2016	542	1.18% Botryococcus sp.	Chlorophyta	Trebouxiophyceae	Trebouxiales	Botryococcaceae	Botryococcus	sp. sp.	4	17.00	68	339 57		1 11	67.02	711.87
7475.05-01	LL0-0.5M	6/21/2016	542	1.18% Chroomonas spp.	Cryptophyta	Cryptophyceae	Pyrenomonadales	Chroomonadaceae	Chroomonas	spp.	7	1.00	7	593 59	03	1 1	188.50	206.10
7475.05-01	LL0-0.5M	6/21/2016	542	1.18% Cryptomonas spp. 1.18% Elakatothrix sp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	41	1.00	41	3471 34		6 6	2212.21	14167.40
7475.05-01 7475.05-01	LL0-0.5M LL0-0.5M	6/21/2016 6/21/2016	542 542	1.18% Elakatotninx sp. 1.18% Fragilaria spp.	Charophyta Bacillariophyta	Klebsormidiophyceae Bacillariophyceae	Klebsormidiales Fragilariales	Elakatotrichaceae Fragilariaceae	Elakatothrix Fragilaria	sp. spp.	116	32.00 2.21	32 256	85 270 9821 216		0 5 8 40	2748.89 980.18	13740.07 39194.53
7475.05-01	LL0-0.5M	6/21/2016	542	1.18% Planktolyngbya spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Leptolyngbyaceae	Planktolyngbya	spp.	10	7.50	75	847 63		2 12	12.27	143.77
7475.05-01	LL0-0.5M	6/21/2016	542	1.18% Pseudokephyrion spp.	Ochrophyta	Chrysophyceae	Chromulinales	Dinobryaceae	Pseudokephyrior		3	1.00	3	254 2		0 0	58.64	27.48
7475.05-01 7475.05-01	LL0-0.5M LL0-0.5M	6/21/2016 6/21/2016	542 542	1.18% Scenedesmus sp. 1.18% Sphaerocystis sp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Chlamydomonadales	Scenedesmaceae Sphaerocystidaceae	Scenedesmus Sphaerocystis	sp. sp.	68 10	6.24 7.20	424 72	5757 3589 847 609		1 66 2 11	1204.28 65.45	79757.80 736.08
7475.05-01	LL0-0.5M	6/21/2016	542	1.18% Tetraëdron sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Tetraëdron	sp.	3	1.00	3	254 2		0 0	283.50	132.85
7475.05-01	LL0-0.5M	6/21/2016	542	1.18% Unknown centrales spp.	Bacillariophyta	Bacillariophyceae	Centrales	Catanulaanaa	Amerikana		7	1.00	7	593 59 54 9)3	1 1	1060.29	1159.32
7475.05-02 7475.05-02	LL1-0.5M LL1-0.5M	6/21/2016 6/21/2016	548 548	5.60% Amphora sp. 5.60% Asterionella formosa	Bacillariophyta Bacillariophyta	Bacillariophyceae Fragilariophyceae	Thalassiophysales Tabellariales	Catenulaceae Tabellariaceae	Amphora Asterionella	sp. formosa	3 18	1.00 4.00	72	321 128	94 85	1 2	10296.00 541.93	1005.71 1270.45
7475.05-02	LL1-0.5M	6/21/2016	548	5.60% Aulacoseira sp.	Bacillariophyta	Coscinodiscophyceae	Aulacoseirales	Aulacoseiraceae	Aulacoseira	sp.	4	6.25	25	71 44	6	0 1	730.03	594.24
7475.05-02 7475.05-02	LL1-0.5M LL1-0.5M	6/21/2016 6/21/2016	548 548	5.60% Chroomonas spp. 5.60% Cosmarium spp.	Cryptophyta Charophyta	Cryptophyceae Conjugatophyceae	Pyrenomonadales Desmidiales	Chroomonadaceae Desmidiaceae	Chroomonas Cosmarium	spp.	7	1.00	7	125 12 54 54	25 M	0 0	169.65 13940.29	38.67 1361.69
7475.05-02	LL1-0.5M	6/21/2016	548	5.60% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp. spp.	51	1.00 1.00	51	910 9	0	2 2	3298.67	5477.64
7475.05-02	LL1-0.5M	6/21/2016	548	5.60% Cymbella sp.	Bacillariophyta	Bacillariophyceae	Cymbellales	Cymbellaceae	Cymbella	sp.	3	1.00	3	54	54	0 0	2816.00	275.07
7475.05-02 7475.05-02	LL1-0.5M LL1-0.5M	6/21/2016 6/21/2016	548 548	5.60% Dinobryon spp. 5.60% Elakatothrix sp.	Ochrophyta	Chrysophyceae	Chromulinales Klebsormidiales	Dinobryaceae Elakatotrichaceae	Dinobryon Elakatothrix	spp.	2	1.00	2 24	36	86 10	0 0	4155.28 1507.96	270.59 1178.38
7475.05-02	LL1-0.5M	6/21/2016	548	5.60% Fragilaria spp.	Charophyta Bacillariophyta	Klebsormidiophyceae Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	sp. spp.	123	4.00 1.00	123	2195 219	.o)5	4 4	433.54	1736.28
7475.05-02	LL1-0.5M	6/21/2016	548	5.60% Gomphonema spp.	Bacillariophyta	Bacillariophyceae	Cymbellales	Gomphonemataceae	Gomphonema	spp.	2	1.00	2	36 3	86	0 0	835.66	54.42
7475.05-02 7475.05-02	LL1-0.5M LL1-0.5M	6/21/2016 6/21/2016	548 548	5.60% Planktolyngbya spp. 5.60% Scenedesmus sp.	Cyanobacteria	Cyanophyceae	Synechococcales Sphaeropleales	Leptolyngbyaceae	Planktolyngbya	spp.	14	7.00	98	250 174 856 549	-	0 3	6.28 174.23	20.05 1747.23
7475.05-02	LL1-0.5M	6/21/2016	548	5.60% Sphaerocystis sp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Chlamydomonadales	Scenedesmaceae Sphaerocystidaceae	Scenedesmus Sphaerocystis	sp. sp.	48 23	6.42 8.00	308 184	410 328		1 6	179.59	1075.96
7475.05-02	LL1-0.5M	6/21/2016	548	5.60% Staurosira sp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Staurosira	sp.	2	12.50	25	36 44	6	0 1	129.59	105.49
7475.05-02 7475.05-03	LL1-0.5M LL2-0.5M	6/21/2016 6/21/2016	548 560	5.60% Unknown centrales spp. 1.15% Achnanthes spp.	Bacillariophyta Bacillariophyta	Bacillariophyceae	Centrales	Achnanthaceae	Achnanthes		2	1.00	2	36		0 0	730.03 245.04	47.54 265.67
7475.05-03	LL2-0.5M	6/21/2016	560	1.15% Actinantines spp. 1.15% Asterionella formosa	Bacillariophyta	Bacillariophyceae Fragilariophyceae	Mastogloiales Tabellariales	Tabellariaceae	Asterionella	spp. formosa	12	1.00 3.00	36	607 60 1041 312		2 6	615.75	3433.24
7475.05-03	LL2-0.5M	6/21/2016	560	1.15% Chroomonas spp.	Cryptophyta	Cryptophyceae	Pyrenomonadales	Chroomonadaceae	Chroomonas	spp.	17	1.00	17	1474 147	'4	3 3	169.65	446.67
7475.05-03 7475.05-03	LL2-0.5M LL2-0.5M	6/21/2016 6/21/2016	560	1.15% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	73	1.00	73	6331 633 5464 546		1 11	2770.89 1074.43	31328.29 10483.64
7475.05-03	LL2-0.5M	6/21/2016	560 560	1.15% Fragilaria spp. 1.15% Gomphonema spp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Bacillariophyceae	Fragilariales Cymbellales	Fragilariaceae Gomphonemataceae	Fragilaria Gomphonema	spp. spp.	63 5	1.00 1.00	63 5	5464 540 434 43		1 1	1451.42	1123.98
7475.05-03	LL2-0.5M	6/21/2016	560	1.15% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Oocystis	sp.	1	4.00	4	87 34	7	0 1	1206.37	747.37
7475.05-03 7475.05-03	LL2-0.5M LL2-0.5M	6/21/2016 6/21/2016	560 560	1.15% Scenedesmus sp. 1.15% Sphaerocystis sp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Chlamydomonadales	Scenedesmaceae Sphaerocystidaceae	Scenedesmus Sphaerocystis	sp.	101	6.00	606 136	8760 5250 1474 1179		6 94 2 21	158.39 143.79	14865.96 3028.81
7475.05-03	LL2-0.5M	6/21/2016	560	1.15% Synedra sp.	Bacillariophyta	Fragilariophyceae	Licmophorales	Ulnariaceae	Synedra	sp. sp.	4	8.00 1.00	4	347 34		1 1	7181.68	4449.20
7475.05-03	LL2-0.5M	6/21/2016	560	1.15% Unknown centrales spp.	Bacillariophyta	Bacillariophyceae	Centrales		-		2	1.00	2	173 1		0 0	1407.43	435.97
7475.05-04 7475.05-04	LL3-0.5M LL3-0.5M	6/22/2016 6/22/2016	550 550	1.23% Asterionella formosa 1.23% Aulacoseira sp.	Bacillariophyta Bacillariophyta	Fragilariophyceae Coscinodiscophyceae	Tabellariales Aulacoseirales	Tabellariaceae Aulacoseiraceae	Asterionella Aulacoseira	formosa	7	6.00 5.00	42 35	570 342 570 28		1 6 1 5	766.55 510.51	4770.13 2647.35
7475.05-04	LL3-0.5M	6/22/2016	550	1.23% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	sp. spp.	32	1.00	32	2608 260		5 5	2300.69	10908.10
7475.05-04	LL3-0.5M	6/22/2016	550	1.23% Elakatothrix sp.	Charophyta	Klebsormidiophyceae	Klebsormidiales	Elakatotrichaceae	Elakatothrix	sp.	3	8.00	24	244 19		0 4	3506.02	12467.11
7475.05-04 7475.05-04	LL3-0.5M LL3-0.5M	6/22/2016 6/22/2016	550 550	1.23% Fragilaria spp. 1.23% Monoraphidium spp.	Bacillariophyta Chlorophyta	Bacillariophyceae Chlorophyceae	Fragilariales Sphaeropleales	Fragilariaceae Selenastraceae	Fragilaria Monoraphidium	spp. spp.	52	1.96 1.00	102	4237 83 ⁻ 407 40		8 15 1 1	659.73 192.42	9970.33 142.55
7475.05-04	LL3-0.5M	6/22/2016	550	1.23% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Oocystis	sp.	6	1.00	6	489 48		1 1	3180.86	2827.72
7475.05-04	LL3-0.5M	6/22/2016	550	1.23% Scenedesmus sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	sp.	125	8.00	1000	10186 814		9 148	359.19	53218.63
7475.05-04 7475.05-04	LL3-0.5M LL3-0.5M	6/22/2016 6/22/2016	550 550	1.23% Sphaerocystis sp. 1.23% Unknown centrales spp.	Chlorophyta Bacillariophyta	Chlorophyceae Bacillariophyceae	Chlamydomonadales Centrales	Sphaerocystidaceae	Sphaerocystis	sp.	65 5	5.54 1.00	360 5	5297 293 407 40		0 53	199.53 565.49	10642.80 418.92
7475.05-05	LL4-0.5M	6/22/2016	565	0.44% Achnanthidium sp.	Bacillariophyta	Bacillariophyceae	Cocconeidales	Achnanthidiaceae	Achnanthidium	sp.	16	1.00	16	3610 36		6 6	129.59	827.93
7475.05-05	LL4-0.5M	6/22/2016	565	0.44% Asterionella formosa	Bacillariophyta	Fragilariophyceae	Tabellariales	Tabellariaceae	Asterionella	formosa	12	4.00	48	2707 1082		5 19	973.89	18666.05
7475.05-05 7475.05-05	LL4-0.5M LL4-0.5M	6/22/2016 6/22/2016	565 565	0.44% Aulacoseira sp. 0.44% Ceratium sp.	Bacillariophyta Miozoa	Coscinodiscophyceae Dinophyceae	Aulacoseirales Gonyaulacales	Aulacoseiraceae Ceratiaceae	Aulacoseira Ceratium	sp. sp	4 10	3.00 1.00	12 10	902 270 2256 225		2 5 4 4	1046.15 2748893.57	5012.73 10976333.95
7475.05-05	LL4-0.5M	6/22/2016	565	0.44% Chroomonas spp.	Cryptophyta	Cryptophyceae	Pyrenomonadales	Chroomonadaceae	Chroomonas	spp.	2	1.00	2	451 4		1 1	232.28	185.50
7475.05-05	LL4-0.5M	6/22/2016	565	0.44% Cocconeis sp.	Bacillariophyta	Bacillariophyceae	Cocconeidales	Cocconeidaceae	Cocconeis	sp.	25	1.00	25	5640 564		0 10	2078.16	20745.28
7475.05-05 7475.05-05	LL4-0.5M LL4-0.5M	6/22/2016 6/22/2016	565 565	0.44% Cryptomonas spp. 0.44% Cymbella sp.	Cryptophyta Bacillariophyta	Cryptophyceae Bacillariophyceae	Cryptomonadales Cymbellales	Cryptomonadaceae Cymbellaceae	Cryptomonas Cymbella	spp. sp.	32	1.00 1.00	32 10	7219 72 ⁻ 2256 22		3 13 4 4	2668.26 1456.00	34093.95 5813.81
7475.05-05	LL4-0.5M	6/22/2016	565	0.44% Dictyosphaerium spp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Chlorellaceae	Dictyosphaerium	-1	2	32.00	64	451 1443		1 26	39.21	1001.92
7475.05-05	LL4-0.5M	6/22/2016	565	0.44% Dinobryon spp.	Ochrophyta	Chrysophyceae	Chromulinales	Dinobryaceae	Dinobryon	spp.	2	1.00	2	451 4		1 1	1399.58	1117.70
7475.05-05 7475.05-05	LL4-0.5M LL4-0.5M	6/22/2016 6/22/2016	565 565	0.44% Fragilaria spp. 0.44% Gomphonema spp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Bacillariophyceae	Fragilariales Cymbellales	Fragilariaceae Gomphonemataceae	Fragilaria Gomphonema	spp. spp.	45 5	3.00 1.00	135 5	10152 304 1128 112		8 54 2 2	724.31 890.64	39044.46 1778.17
7475.05-05	LL4-0.5M	6/22/2016	565	0.44% Scenedesmus sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	sp.	59	5.66	334	13311 753	52 2	4 133	343.60	45824.50
7475.05-05 7475.05-05	LL4-0.5M LL4-0.5M	6/22/2016 6/22/2016	565	0.44% Sphaerocystis sp. 0.44% Staurosira sp.	Chlorophyta Bacillariophyta	Chlorophyceae Bacillariophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	sp.	52	8.00 22.00	416	11731 938 451 992		1 166	268.08 56.55	44530.95 993.52
7475.05-05	LL4-0.5M	6/22/2016	565	0.44% Stauloslia sp. 0.44% Synedra sp.	Bacillariophyta	Fragilariophyceae	Fragilariales Licmophorales	Fragilariaceae Ulnariaceae	Staurosira Synedra	sp. sp.	17	1.00	44 17	3835 383		7 7	9217.43	62568.87
7475.05-05	LL4-0.5M	6/22/2016	565	0.44% Unknown centrales spp.	Bacillariophyta	Bacillariophyceae	Centrales		-	·	14	1.00	14	3158 31	58	6 6	923.63	5163.27
7475.05-06 7475.05-06	LL5-0.5M LL5-0.5M	6/22/2016 6/22/2016	520 520	0.46% Amphora sp. 0.46% Asterionella formosa	Bacillariophyta Bacillariophyta	Bacillariophyceae	Thalassiophysales Tabellariales	Catenulaceae Tabellariaceae	Amphora Asterionella	sp. formosa	3	1.00 4.00	3 244	647 64 13159 526		1 1 25 101	1732.50 1178.10	2156.22 119253.01
7475.05-06	LL5-0.5M	6/22/2016	520	0.46% Aulacoseira sp.	Bacillariophyta		Aulacoseirales	Aulacoseiraceae	Aulacoseira	sp.	3	7.33	244	647 474		1 9	608.68	5555.37
7475.05-06	LL5-0.5M	6/22/2016	520	0.46% Cocconeis sp.	Bacillariophyta	Bacillariophyceae	Cocconeidales	Cocconeidaceae	Cocconeis	sp.	12	1.00	12	2589 258		5 5	6272.19	31224.75
7475.05-06 7475.05-06	LL5-0.5M LL5-0.5M	6/22/2016 6/22/2016	520 520	0.46% Cryptomonas spp. 0.46% Cymbella sp.	Cryptophyta Bacillariophyta	Cryptophyceae Bacillariophyceae	Cryptomonadales Cymbellales	Cryptomonadaceae Cymbellaceae	Cryptomonas Cymbella	spp.	3	1.00 1.00	3	647 64 647 64		1 1 1 1	2389.18 10237.50	2973.51 12741.30
7475.05-06	LL5-0.5M	6/22/2016	520	0.46% Diatoma spp.	Bacillariophyta		Tabellariales	Tabellariaceae	Diatoma	sp. sp.	4	1.00	4	863 80		2 2	12723.45	21113.65
7475.05-06	LL5-0.5M	6/22/2016	520	0.46% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	60	1.58	95	12944 2049		.5 39	603.19	23772.42
7475.05-06 7475.05-06	LL5-0.5M LL5-0.5M	6/22/2016 6/22/2016	520 520	0.46% Gomphonema spp. 0.46% Melosira sp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Coscinodiscophyceae	Cymbellales Melosirales	Gomphonemataceae Melosiraceae	Gomphonema Melosira	spp.	2 12	1.00 3.00	2 39	431 43 2804 84		1 1 5 16	6503.10 8482.30	5395.71 137238.74
7475.05-06	LL5-0.5M	6/22/2016	520 520	0.46% Monoraphidium spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Selenastraceae	Monoraphidium	sp. spp.	6	3.00 1.00	6	1294 129		2 2	85.09	211.79
7475.05-06	LL5-0.5M	6/22/2016	520	0.46% Navicula spp.	Bacillariophyta	Bacillariophyceae	Naviculales	Naviculaceae	Navicula	spp.	8	1.00	8	1726 172	26	3 3	16587.61	55051.89
7475.05-06 7475.05-06	LL5-0.5M LL5-0.5M	6/22/2016 6/22/2016	520 520	0.46% Planktolyngbya spp. 0.46% Scenedesmus sp.	Cyanobacteria Chlorophyta	Cyanophyceae Chlorophyceae	Synechococcales Sphaeropleales	Leptolyngbyaceae Scenedesmaceae	Planktolyngbya Scenedesmus	spp.	4 20	12.00 6.00	48 120	863 103 4315 258		2 20 8 50	14.73 143.99	293.24 7168.23
7475.05-06	LL5-0.5M	6/22/2016	520	0.46% Staurodesmus sp.	Charophyta	Conjugatophyceae	Desmidiales	Desmidiaceae	Staurodesmus	sp. sp.	1	1.00	1	216 2 [°]		0 0	37531.56	15570.23
7475.05-06	LL5-0.5M	6/22/2016	520	0.46% Staurosira sp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Staurosira	sp.	12	14.00	168	2589 3624	2	5 70	141.37	9853.06
7475.05-06 7475.05-06	LL5-0.5M LL5-0.5M	6/22/2016 6/22/2016	520 520	0.46% Surirella spp. 0.46% Synedra sp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Fragilariophyceae	Surirellales Licmophorales	Surirellaceae Ulnariaceae	Surirella Synedra	spp. sp.	2 64	1.00 1.00	2 64	431 43 13806 1380		1 1 27 27	2309.07 4005.53	1915.87 106350.26
7475.05-06	LL5-0.5M	6/22/2016	520	0.46% Tetraëdron sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Tetraëdron	sp.	1	1.00	1	216 21	6	0 0	256.00	106.20
7475.05-06	LL5-0.5M	6/22/2016	520	0.46% Unknown centrales spp.	Bacillariophyta	Bacillariophyceae	Centrales				21	1.00	21	4530 453	80	9 9	314.16	2736.95

Avista Phytoplankton 2016 (Batch4) Taxa Report with Biovolumes

EcoAnalysts, inc.

H/16/0/11 LL0-6.3M 7752076 S.30 1.50% Adlacessing sp. 5 9 0.00 46 3 H/15/071 LL0-6.3M 7752076		of Cells 11 45	atural Nu Unit of 1.00	Natural Unit 1.00	Natural Units	Pecies		Genus	Family	Order	Class	Division		ived Pe			
747.07 01 1.0.0.5M 775.0716 1.0.0 1.0.1 1.0.0 1.1 1.0.0 1.1 1.0.0 1.1 1.0.0 0.0	734 734 333 3001 600 600	11 45	1.00	1.00				Genus	Family	Order		Division		^ -		011.10	•
TATS. 57-01 LLG-0.5M 775207 S31 5.0% Certain p. Maca Dirps/press Complementable Complementable<	600 600		9.00			ormosa	form	Asterionella							· · · · · · · · · · · · · · · · · · ·		
7475.07-01 LLD-35M 7750716 S10 1.50% Copyclorying Copyclorying <th< td=""><td></td><td>0</td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,2</td><td>•</td><td></td><td></td><td></td><td></td></th<>		0			5							1,2	•				
1775.07:01 LL0-0.5M 7/8/2016 S30 1.05/b Dispospherium spp. Chicrophysia Theorying The		0			13			_					•				
7475.070 LL0-0.5M 7752016 533 1.50% Dinologions pp. Octrolphysic Chronphysical Dinologions spip. 3 1 1.00 3 2 7475.070 LL0-0.5M 7752016 533 1.50% Praginatina pp. Baciliancephysical Fraginatina Fraginationa spip. 3 1 1.00 3 2 7475.070 LL0-0.5M 7752016 533 1.50% Scrubelemics Fraginationa Spip. 3 1.00 3 2 7475.070 LL0-0.5M 7752016 533 1.50% Scrubelemics pp. Chronphysic Chronphysical Chronphysical </td <td>1534 1534</td> <td></td> <td></td> <td></td> <td>23</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>y 11</td> <td></td> <td></td> <td></td> <td></td>	1534 1534				23				•				y 11				
17475.07:01 LL0-0.5M 778/2076 Sol 1.0% 1.5% Fragilariales Fragilariales Fragilaria sp. 3 1.00 3 2 7475.07:01 LL0-0.5M 778/2076 Sol 1.0% Songetta sp. Chicorphya Telepilariales Corpstaces Corpstaces <td>267 3201 200 200</td> <td></td> <td></td> <td></td> <td>4</td> <td></td>	267 3201 200 200				4												
1476.77-01 LL0-0.5M 775/2016 530 1.60% complements p. Bacillanciptycase Cymbellelies Complementaticase Gomphenermals p. 43 1.00 46 30 7475.07-01 LL0-0.5M 775/2016 530 1.50% Scenetossnus s.p. Chiorophycase Chiorophycase Schaeropicales Scenedosmacae	67 800	12			1	p.	sp.					Charophyta	1.50% Elakatothrix sp.				
1475.07-01 LU0.05M 775/2076 530 1.50% boxelesamus spp. Chlorophysa Chlorophysa Chlorophysa Chlorophysa Chlorophysa Spearoglausia Spearoglau	200 200 200 200	3			3	•		•	0	0			0 11				
7475.07-01 LL0.05M 775/2016 543 1.50% Sphaerocysts p. Chlorophyse Chlorophyse Tabellariales Sphaerocysts/aceas S	3068 3068		1.00	1.00		pp.	spp	Oocystis	Oocystaceae	Chlorellales	Trebouxiophyceae	Chlorophyta	1.50% Oocystis spp.	530	7/5/2016	LL0-0.5M	7475.07-01
7475.07-02 L11-0.5M 7%2016 645 1.20% Asteriorelia formosa Bacillariophya Fraglianophyceae Tabellarioscella Aulacosciracea Asteriorelia formosa 2 1.00 3 1.00 3 2 7475.07-02 L11-0.5M 7%2016 545 1.20% Certatum sp. Micro Dirophyceae Gryadmonadales Cryationnadaces Cryationnadaces Cryationnadaces Cryationnadaces Sp. 3 1.00 4 3 2 7475.07-02 L11-0.5M 7%2016 545 1.20% Cryatella sp. Bacillariophyca Cryotonnadaces Stephanodiscales Chorophyta Tebox/splanum Sp. 1 1.00 4 3 7475.07-02 L11-0.5M 7%2016 545 1.20% Explanutory Bacillariophyta Chorophyta Tebox/splanum Sp. 1 0.00 4 3 2 7 7 7.00 7 1 0.00 4 3 3 0 3 2 7 7 7 0.00 1.00 4 3 2 7 7 7 0.00 1.00	1271 83502 1134 10404				169 17	•											
7475.07-02 LL1-0.5M 7/52.076 545 1.20% Corptionnas Dinophyceae Gonyulacales Certaiceae Certaicmas sp. 3 1.00 6 4 7475.07-02 LL1-0.5M 7/52.076 545 1.20% Cyclotella sp. Bacillicriphys Mediophyceae Stephanodiscales Chyptomnadales Cyptomnadales Cyp	166 166	2			2					Tabellariales	Fragilariophyceae	Bacillariophyta	1.20% Asterionella formosa	545	7/5/2016	LL1-0.5M	7475.07-02
7475.07-02 L11-0.5M 7%2016 645 1.20% Cryptomoras spp. Cryptomoradaese	249 249 249 249				3		-1						•				
7475.07-02 LL1-0.5M 7/5/2016 545 1.20% Diryosphaerium spp. Charophyca Trebouxiophycae Chiorellaes Chiorellace Diryosphaerium spp. 4 1.00 4 3.3 7475.07-02 LL1-0.5M 7/5/2016 546 1.20% Fragilaria spp. Chiorellyta Bacillariophyceae Fragilariales Fragilariales Fragilariales Fragilariales Fragilariales Sphaeropleales Soparatocae Monoraphitum spp. 3 1.00 3 2 7475.07-02 LL1-0.5M 7/5/2016 546 1.20% Senadersups Chiorelphyceae Chiorelphyceae Chiorelphyceae Sphaeropleales Scenadesmaceae Scenadesmaceae Sphaeropleales Sphaeropleales Scenadesmaceae Sphaeropleales Sphaeropleal	499 499	6			6		-1	Cryptomonas				Cryptophyta	1.20% Cryptomonas spp.	545	7/5/2016	LL1-0.5M	7475.07-02
7475.07-02 L11-0.5M 7/6/2016 545 1.20% Etakatotrink s.p. Charophyta Klebsormidiales Fragilariaceae Elakatotrink s.p. 1 2.00 2.0 7475.07-02 L11-0.5M 7/6/2016 545 1.20% Konzaphidum spp. Chlorophyta Chlorophyta Scheropheales Sclenastraceae Monaraphidum spp. 63 1.00 63 5.2 7475.07-02 L11-0.5M 7/6/2016 545 1.20% Scenedesmus spp. Chlorophyta Chlorophyceae Sphaeropleales Scenedesmus spp. 63 1.00 63 5.2 7475.07-02 L11-0.5M 7/6/2016 545 1.20% Scenedesmus spp. Chlorophyta Chlorophyceae Chlorophyceae Sphaeropleales Scenedesmus spp. 1.00 63 6.0 6.8 7/475.07-0.3 L12-0.5M 7/6/2016 53 0.72% Actinatrihidum sp. Bacilariophyceae Tablelariaceae Actinatrihidum sp. 6 1.00 4 1.00 4 1.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	582582333333	7			7			•									
7475.07-02 L11-0.5M 7/5/2016 545 1.20% Mororaphidium spp. Chlorophyta	83 166	4			4												
7475.07-02 L11-0.5M 7%/2016 645 1.20% Ocoysits spp. Chlorophyta Trebouxidophyceae Chlorophyta Concontallas Achnanthiliaceae Chlorophyta Cryptophyta Cryptophy	1663 33259	400			20			•	0	0			c 11				
7475.07-02 LL1-0.5M 7/5/2016 545 1.20% Somedesmups sp. Chlorophyta Chlorophyceae Sphaeropleales Somedesmus sp. pp. 167 6.00 1002 138 7475.07-02 LL1-0.5M 7/5/2016 535 0.72% Achranthidium sp. Bacillariophyceae Chlorophyceae Chlorophyceae Chlorophyceae Achranthidiaceae	249 249 5238 5238	3 63			3 63												
7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Achnanthidium sp. Bacillariophyceae Cocconeidales Athanthidiaceae Achnanthidium sp. 6 1.00 6 8. 7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Actionomas sp. Cryptophyta Cryptophyceae Tabellariales Tabellariacea Actionative 50 1.00 4 50 7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Coelastrum sp. Chlorophyta Chlorophyta <td>3886 83314</td> <td></td> <td>6.00</td> <td>6.00</td> <td>167</td> <td></td> <td></td> <td>Scenedesmus</td> <td>Scenedesmaceae</td> <td>Sphaeropleales</td> <td>Chlorophyceae</td> <td>Chlorophyta</td> <td>1.20% Scenedesmus spp.</td> <td>545</td> <td>7/5/2016</td> <td>LL1-0.5M</td> <td>7475.07-02</td>	3886 83314		6.00	6.00	167			Scenedesmus	Scenedesmaceae	Sphaeropleales	Chlorophyceae	Chlorophyta	1.20% Scenedesmus spp.	545	7/5/2016	LL1-0.5M	7475.07-02
7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Asterionella formosa Bacillariophyta Fragilariophyceae Tabellariales Tabellariaceae Asterionella formosa 4 1.00 4 53 7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Chrosmas spp. Chrophyta Chropphyta Chropp	1829 1829 839 839	22			22		- 1			-							
7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Coelastrum sp. Chlorophyta Chlorophyceae Scenedesmaceae Coelastroideae Corptomonas sp. 2 24.00 48 22 7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Crylothmonas sp. Cryptomonas sp. Cryptomonadocaee Cryptomonadaceae Cryptomonas sp. 39 1.00 28 36 7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Cryclotella sp. Bacillariophyta Mediophyceae Cryptomonadaceae Cryptomonas Sp. 8 1.00 28 36 7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Cryptophyta Chlorophyta Tebouxiophyceae Chloreplateae Cymbellaesa Cymbellaesa Diryotyptophae 8 1.00 4 1.00 4 1.00 4 1.00 4 1.00 1 1.00 1 1.00 13 1.00 13 1.00 13 1.00 1 1.00 1 1.00 13 1.00 13 1.00 1 1.00 13 1.00 13 1.00	559 559	4			4		-1						•				
7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Cryptomonas spp. Cryptophyta Cryptophyceae Cryptomonadales Cryptomonadaceae Cryptomonas spp. 39 1.00 39 544 7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Cyclotella spp. Bacillariophyta Mediophyceae Stephanodiscales Stephanodiscales Cryptomonad sepa Cyclotella spp. 26 1.00 26 1.00 26 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 8 1.00 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1	1398 1398				10	-				,							
7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Cyclotella spp. Bacillariophyta Mediophyceae Stephanodiscales St	280 6712 5453 5453				2 39		- 1										
7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Dictyosphaerium sp. Chlorophyta Trebouxiophyceae Chlorellales Chlorellales Dictyosphaerium sp. 4 12.00 48 535 7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Elakatothrix sp. Charophyta Klebsormidiophyceae Fragilariales Elakatothrix caee Elakatothrix sp. 1 2.00 2 14 7475.07-03 LL2-0.5M 7/5/2016 535 0.72% Gomphonema spp. Bacillariophyta Bacillariophyceae Cymbellales Gomphonemataceae Gomphonema spp. 1 1.00 11 1.00 11 1.00 11 1.00 11 1.00 11 1.00 11 1.00 11 1.00 11 1.00 11 1.00 11 1.00 11 1.00 11 1.00 13 18 14 1.20.5M 7/5/2016 535 0.72% Monoraphidium spp. Chlorophyta Chlorophytae Chlorophytae Splaeropleales Selenastraceae Monoraphidium spp. 3 1.00 13 14 2.00	3636 3636					•		•••	Stephanodiscaceae	Stephanodiscales	Mediophyceae		0.72% Cyclotella spp.		7/5/2016	LL2-0.5M	7475.07-03
7475.07-03LL2-0.5M7/5/20165350.72% Elakatothrix sp.CharophytaKlebsormidiophyceaeKlebsormidialesElakatotrichaceaeElakatothrixsp.12.00217475.07-03LL2-0.5M7/5/20165350.72% Fragilaria spp.BacillariophytaBacillariophyteaeFragilarialesFragilarialesFragilariaspp.131.0013187475.07-03LL2-0.5M7/5/20165350.72% Gomphonema spp.BacillariophytaBacillariophyceaeSphaeroplealesSelenastraceaeGomphonemaspp.91.0019127475.07-03LL2-0.5M7/5/20165350.72% Monoraphidium spp.ChlorophytaChlorophytaChlorophyceaeSphaeroplealesSelenastraceaeMonoraphidium spp.91.0019127475.07-03LL2-0.5M7/5/20165350.72% Nitzschia spp.BacillariophyceaeChlorophytaChlorophytaChlorophytaChlorophytaChlorophytaSphaeroplealesSelenastraceaeNitzschiaspp.11.001013137475.07-03LL2-0.5M7/5/20165350.72% Pediastrum sp.ChlorophytaChlorophytaChlorophytaChlorophytaSphaeroplealesScenedesmaceaeCocystisspp.11.001013137475.07-03LL2-0.5M7/5/20165350.72% Pediastrum sp.ChlorophytaChlorophytaChlorophytaSphaeroplealesScenedesmaceaeScenedesmusspp.14	1119 1119 559 6712	8 48			8		- 1			5							
7475.07-03LL2-0.5M7/5/20165350.72% Gomphonema spp.BacillariophytaBacillariophyteaeCymbellalesGomphonemataceaeGomphonemaspp.111.00111507475.07-03LL2-0.5M7/5/20165350.72% Monoraphidium spp.ChlorophytaChlorophytaSphaeroplealesSelenastraceaeMonoraphidiumspp.91.009127475.07-03LL2-0.5M7/5/20165350.72% Nitzschia spp.BacillariophytaBacillariophyceaeBacillariophyceaeBacillariaceaeNitzschiaspp.31.00347475.07-03LL2-0.5M7/5/20165350.72% Pediastrum sp.ChlorophytaTrebouxiophyceaeChlorophyceaeSphaeroplealesHydrodictyaceaePediastrumsp.132.003217475.07-03LL2-0.5M7/5/20165350.72% Scenedesmus spp.ChlorophytaChlorophyceaeSphaeroplealesHydrodictyaceaePediastrumsp.132.003217475.07-03LL2-0.5M7/5/20165350.72% Scenedesmus spp.ChlorophytaChlorophyteaeSphaeroplealesScenedesmaceaeScenedesmus spp.1428.0011361987475.07-03LL2-0.5M7/5/20165350.72% Sphaerocystis sp.ChlorophytaChlorophytaeChlorophytaeeChlorophytaeeSphaeroplealesSphaerocystidaceaeSphaerocystidaceaeSphaerocystidaceaeSphaerocystidaceaeSphaerocystidaceaeSphaerocystidaceaeSphaer	140 280	2			1	•		<i>,</i>									
7475.07-03LL2-0.5M7/5/20165350.72% Monoraphidium spp.ChlorophytaChlorophytaSphaeroplealesSelenastraceaeMonoraphidiumspp.91.0091247475.07-03LL2-0.5M7/5/20165350.72% Nitzschia spp.BacillariophytaBacillariophytaBacillariophyceaeBacillarialesBacillarialesBacillarialesBacillarialesBacillarialesSpp.31.00347475.07-03LL2-0.5M7/5/20165350.72% Occystis spp.ChlorophytaTrebouxiophyceaeSphaeroplealesHydrodictyaceaePediastrumsp.132.0032147475.07-03LL2-0.5M7/5/20165350.72% Scenedesmus spp.ChlorophytaChlorophyceaeSphaeroplealesHydrodictyaceaePediastrumsp.132.0032147475.07-03LL2-0.5M7/5/20165350.72% Scenedesmus spp.ChlorophytaChlorophyceaeSphaeroplealesScenedesmaceaeScenedesmusspp.132.0032147475.07-03LL2-0.5M7/5/20165350.72% Sphaerocystis sp.ChlorophytaChlorophyceaeSphaeroplealesScenedesmaceaeScenedesmusspp.1428.0011361987475.07-03LL2-0.5M7/5/20165350.72% Sphaerocystis sp.ChlorophyceaeChlorophyceaeChlorophyceaeSphaerocystidaceaeSphaerocystidaceaeSphaerocystidaceaeSphaerocystidaceaeSphaerocystidaceaeSphaerocystidaceae <t< td=""><td>1818 1818</td><td></td><td></td><td></td><td>13</td><td></td><td></td><td>•</td><td>0</td><td>5</td><td>1 9</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1818 1818				13			•	0	5	1 9						
7475.07-03LL2-0.5M7/5/20165350.72% Nitzschia spp.BacillariophytaBacillariophytaBacillariophyceaeBacillarialesBacillarialesBacillariaceaeNitzschiaspp.31.00347475.07-03LL2-0.5M7/5/20165350.72% Occystis spp.ChlorophytaTrebouxiophyceaeChlorellalesOocystaceaeOccystisspp.101.00101337475.07-03LL2-0.5M7/5/20165350.72% Pediastrum sp.ChlorophytaChlorophytaChlorophyceaeSphaeroplealesHydrodictyaceaePediastrumsp.132.0032147475.07-03LL2-0.5M7/5/20165350.72% Scenedesmus spp.ChlorophytaChlorophytaChlorophyceaeSphaeroplealesScenedesmaceaeScenedesmusspp.1428.0011361987475.07-03LL2-0.5M7/5/20165350.72% Sphaerocystis sp.ChlorophytaChlorophytaChlorophyteaeChlorophyteaeSphaeroplealesSphaerocystidaceaeSphaerocystissp.1428.0011361987475.07-03LL2-0.5M7/5/20165350.72% Sphaerocystis sp.ChlorophytaChlorophytaChlorophyteaeChlorophyteaeChlorophyteaeSphaeroplealesSphaerocystidaceaeSphaerocystissp.258.80220347475.07-03LL2-0.5M7/5/20165350.72% Synedra sp.BacillariophytaFragilariophyteaeTabellarialesTabellariaceaeTabellari	1538 1538 1258 1258				11 9			•		2							
7475.07-03LL2-0.5M7/5/20165350.72%Pediastrum sp.ChlorophytaChlorophytaChlorophytaSphaeroplealesHydrodictyaceaePediastrumsp.132.0032147475.07-03LL2-0.5M7/5/20165350.72%Scenedesmus spp.ChlorophytaChlorophytaChlorophytaeeSphaeroplealesScenedesmaceaeScenedesmussp.1428.00113619897475.07-03LL2-0.5M7/5/20165350.72%Sphaerocystis sp.ChlorophytaChlorophytaeeChlorophyceaeChlorophyceaeSphaerocystidaceaeSphaerocystidaceaeSphaerocystissp.258.802203447475.07-03LL2-0.5M7/5/20165350.72%Sphaerocystis sp.ChlorophytaeChlorophytaeeChlorophyceaeLicmophoralesUlnariaceaeSphaerocystissp.258.802203447475.07-03LL2-0.5M7/5/20165350.72%SphaerocystisFragilariophyceaeLicmophoralesUlnariaceaeSynedrasp.71.00797475.07-03LL2-0.5M7/5/20165350.72%Tabellaria spp.BacillariophytaFragilariophyceaeTabellarialesTabellariaesp.51.00567475.07-04LL3-0.5M7/6/20165500.43%Asterionella formosaBacillariophytaFragilariophyceaeTabellarialesTabellariaeeAsterionellaformosa61.006144	419 419	-	1.00	1.00	3			Nitzschia	Bacillariaceae	Bacillariales	Bacillariophyceae	Bacillariophyta	0.72% Nitzschia spp.	535	7/5/2016	LL2-0.5M	7475.07-03
7475.07-03LL2-0.5M7/5/20165350.72% Scenedesmus spp.ChlorophytaChlorophytaChlorophytaeeSphaeroplealesScenedesmuseeScenedesmusspp.1428.0011361987475.07-03LL2-0.5M7/5/20165350.72% Sphaerocystis sp.ChlorophytaChlorophytaeChlorophyceaeChlamydomonadalesSphaerocystidaceaeSphaerocystidaceaeSphaerocystissp.258.80220347475.07-03LL2-0.5M7/5/20165350.72% Synedra sp.BacillariophytaFragilariophyceaeLicmophoralesUlnariaceaeSynedrasp.71.00797475.07-03LL2-0.5M7/5/20165350.72% Tabellaria spp.BacillariophytaFragilariophyceaeTabellarialesTabellariaceaeSp.51.00567475.07-03LL2-0.5M7/6/20165500.43% Asterionella formosaBacillariophytaFragilariophyceaeTabellarialesTabellariaceaeAsterionellaformosa61.006144	1398 1398 140 4474				10	-		•	•				, ,,				
7475.07-03LL2-0.5M7/5/20165350.72% Synedra sp.Bacillariophyta sp.FragilariophyceaeLicmophoralesUlnariaceaeSynedrasp.71.00797475.07-03LL2-0.5M7/5/20165350.72% Tabellaria spp.BacillariophytaFragilariophyceaeTabellarialesTabellariaceaeSynedrasp.51.00567475.07-04LL3-0.5M7/6/20165500.43% Asterionella formosaBacillariophytaFragilariophyceaeTabellarialesTabellariaceaeAsterionellaformosa61.006144	9856 158844				142								•				
7475.07-03LL2-0.5M7/5/20165350.72% Tabellaria spp.BacillariophytaFragilariophyceaeTabellarialesTabellariaceaeTabellariasp.51.00567475.07-04LL3-0.5M7/6/20165500.43% Asterionella formosaBacillariophytaFragilariophyceaeTabellarialesTabellariaceaeTabellariasp.51.00560.43%Asterionella formosaBacillariophytaFragilariophyceaeTabellarialesTabellariaceaeAsterionellaformosa61.006140	3496 30762	220			25												
7475.07-04 LL3-0.5M 7/6/2016 550 0.43% Asterionella formosa Bacillariophyta Fragilariophyceae Tabellariales Tabellariaceae Asterionella formosa 6 1.00 6 140	979 979 699 699	7 5			7 5		- 1				0 1 1						
7475.07-04 LL3-0.5M 7/6/2016 550 0.43% Aulacoseira sp. Bacillarionhyta. Coscinodisconhyceae Aulacoseirales Aulacoseira en 2.4.00 8.4	1409 1409	6	1.00	1.00	6			Asterionella	Tabellariaceae		Fragilariophyceae	Bacillariophyta	0.43% Asterionella formosa	550	7/6/2016	LL3-0.5M	7475.07-04
	470 1879 705 705	8	4.00 1.00		2	F -	sp.	Aulacoseira Chroomonas	Aulacoseiraceae	Aulacoseirales Pyrenomonadales	Coscinodiscophyceae Cryptophyceae	Bacillariophyta Cryptophyta	•		7/6/2016 7/6/2016		
7475.07-04 LL3-0.5M 7/6/2016 550 0.43% Coelastrum sp. Chlorophyta Chlorophyceae Scenedesmaceae Coelastroideae Coelastrum sp. 2 18.00 36 4	470 8456				2					,				550	7/6/2016	LL3-0.5M	7475.07-04
	6577 6577 4608 4608					pp.	spp	•••		51							
7475.07-04LL3-0.5M7/6/20165500.43% Cyclotella spp.BacillariophytaMediophyceaeStephanodiscalesStephanodiscaceaeCyclotellaspp.201.00204697475.07-04LL3-0.5M7/6/20165500.43% Cymbella sp.BacillariophytaBacillariophytaBacillariophyceaeCymbellalesCymbellaceaeCymbellasp.51.00511	4698 4698 1174 1174				20 5	рр. D.	spp.		· · · · · · · · · · · · · · · · · · ·	•			, ,,				
	9630 77041				41	•		• •									
	235 470 235 235	2 1			1								•				
7475.07-04 LL3-0.5M 7/6/2016 550 0.43% Fragilaria spp. Bacillariophyta Bacillariophyceae Fragilariales Fragilariaceae Fragilaria spp. 7 1.86 13 16	1644 3053	13			7		•	Fragilaria	0	0	Bacillariophyceae	• • •	0.43% Fragilaria spp.	550	7/6/2016	LL3-0.5M	7475.07-04
7475.07-04LL3-0.5M7/6/20165500.43% Navicula spp.BacillariophytaBacillariophyceaeNaviculalesNaviculaceaeNaviculaspp.81.008187475.07-04LL3-0.5M7/6/20165500.43% Oocystis spp.ChlorophytaTrebouxiophyceaeChlorellalesOocystaceaeOocystisspp.112.0022256	1879 1879 2584 5167	8			8	•											
	470 15032				2	•			•				, ,,				
	0165 318970				171	•											
7475.07-05LL4-0.5M7/6/20165500.18% Asterionella formosaBacillariophytaFragilariophyceaeTabellarialesTabellariaceaeAsterionellaformosa21.0021147475.07-05LL4-0.5M7/6/20165500.18% Aulacoseira sp.BacillariophytaCoscinodiscophyceaeAulacoseiralesAulacoseiraceaeAulacoseirasp.35.001517	1141 1141 1711 8556	-			2												
7475.07-05 LL4-0.5M 7/6/2016 550 0.18% Botryococcus sp. Chlorophyta Trebouxiophyceae Trebouxiales Botryococcaceae Botryococcus sp. 1 16.00 16 5	570 9127	16			1								0.18% Botryococcus sp.	550	7/6/2016	LL4-0.5M	7475.07-05
	6845 6845 2852 2852				12		•										
7475.07-05 LL4-0.5M 7/6/2016 550 0.18% Crucigeniella sp. Chlorophyta Trebouxiophyceae Chlorellales Oocystaceae Crucigeniella sp. 2 16.00 32 11.00	1141 18254	•			2								•				
	2852 2852	-			5												
7475.07-05LL4-0.5M7/6/20165500.18% Cyclotella spp.BacillariophytaMediophyceaeStephanodiscalesStephanodiscaceaeCyclotellaspp.201.00201147475.07-05LL4-0.5M7/6/20165500.18% Dictyosphaerium spp.ChlorophytaTrebouxiophyceaeChlorellalesChlorellaceaeDictyosphaerium spp.128.0096684	1409 11409 6845 54761	20 96			20 12												
7475.07-05 LL4-0.5M 7/6/2016 550 0.18% Dinobryon spp. Ochrophyta Chrysophyceae Chromulinales Dinobryaceae Dinobryon spp. 9 1.00 9 51	5134 5134	9	1.00	1.00	9			Dinobryon	Dinobryaceae	Chromulinales	Chrysophyceae	Ochrophyta	0.18% Dinobryon spp.	550	7/6/2016	LL4-0.5M	7475.07-05
	5134 25099 6275 10268				9 11			-	•	0			• • • •				
	1141 27381				2	•		-	-								
	9220 953757	1672			209												
	570 570 7354 47354	1 71			1 71		- 1						•				
7475.07-06 LL5-0.5M 7/6/2016 530 0.15% Amphora sp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora sp. 7 1.00 7 460	4669 4669	7	1.00	1.00	7	p.	sp.	Amphora	Catenulaceae	Thalassiophysales	Bacillariophyceae	Bacillariophyta	0.15% Amphora sp.	530	7/6/2016	LL5-0.5M	7475.07-06
	4002 4002 0671 10671	•			6						0 1 1						
	1334 1334				2		•						•				
	667 667	1			1		•				0 1 2						
7475.07-06LL5-0.5M7/6/20165300.15% Fragilaria spp.BacillariophytaBacillariophyceaeFragilarialesFragilariaceaeFragilariaspp.981.009865307475.07-06LL5-0.5M7/6/20165300.15% Gomphonema spp.BacillariophytaBacillariophyceaeCymbellalesGomphonemataceaeGomphonemaspp.171.00171133	5361 65361 1338 11338				98 17			-	U U	0			• • • •				
7475.07-06 LL5-0.5M 7/6/2016 530 0.15% Melosira sp. Bacillariophyta Coscinodiscophyceae Melosirales Melosiraceae Melosira sp. 13 2.00 26 86	8670 17341	26	2.00	2.00			sp.	Melosira	Melosiraceae	Melosirales	Coscinodiscophyceae	Bacillariophyta	0.15% Melosira sp.	530	7/6/2016	LL5-0.5M	7475.07-06
	8670 8670 1338 11338				13	•											
	1338 11338 1334 10671				2												
7475.07-06 LL5-0.5M 7/6/2016 530 0.15% Pediastrum sp. Chlorophyta Chlorophyceae Sphaeropleales Hydrodictyaceae Pediastrum sp. 2 16.00 32 133	1334 21342	32	16.00	16.00	2	р.	sp.	Pediastrum	Hydrodictyaceae	Sphaeropleales	Chlorophyceae	Chlorophyta	0.15% Pediastrum sp.	530	7/6/2016	LL5-0.5M	7475.07-06
	667 8670				1					-							
7475.07-06 LL5-0.5M 7/6/2016 530 0.15% Staurosira sp. Bacillariophyta Bacillariophyceae Fragilariales Fragilariaceae Staurosira sp. 3 8.00 24 200	2005 48021		H .(<i>M</i>)		10	DD.	SDD	Scenedesmus	Scenedesmaceae	Sphaeropleales	Chlorophyceae	Chlorophyta	U.10% acenedestitus soo			0.0101	
	2005 48021 2001 16007	24	8.00	8.00	3			Staurosira	Fragilariaceae	Fragilariales	Bacillariophyceae	Bacillariophyta	0.15% Staurosira sp.	530	7/6/2016		
		24	8.00 1.00	8.00	3	p. p.	sp.	Staurosira	Fragilariaceae	Fragilariales	Bacillariophyceae	Bacillariophyta	0.15% Staurosira sp.	530	7/6/2016		

Avista Phytoplankton 2016 (Batch5) Taxa Report with Biovolumes

EcoAnalysts, inc.

			olume								Number of C	•				Units per mL (in	Cells per mL (in		
EcoAnalysts Sample ID	Site ID		eceived F nL) C	Percent Counted Taxon	Division	Class	Order	Family	Genus	Species	Natural Units		Number of Cells	Units / Sample	Cells/	sample received)	sample	AVG_BV (µ³)	Biovolume (µ³/mL)
7475.09-01	LL0-0.5M	7/19/2016	500	0.49% Achnanthidium sp.	Bacillariophyta	Bacillariophyceae	Cocconeidales	Achnanthidiaceae	Achnanthidium	sp.	1	1.00		204	204	0.41	0.41	153.15	62.40
7475.09-01	LL0-0.5M	7/19/2016	500	0.49% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	46	25.00	1150	9370	234259	18.74	468.52	1.77	827.87
7475.09-01	LL0-0.5M	7/19/2016	500	0.49% Asterionella sp.	Bacillariophyta	Fragilariophyceae	Tabellariales	Tabellariaceae	Asterionella	sp.	6	1.00	6	1222	1222	2.44	2.44	501.87	1226.79
7475.09-01	LL0-0.5M	7/19/2016	500	0.49% Aulacoseira sp.	Bacillariophyta	Coscinodiscophyceae	Aulacoseirales	Aulacoseiraceae	Aulacoseira	sp.	4	4.00	16	815	3259	1.63	6.52	384.85	2508.62
7475.09-01 7475.09-01	LL0-0.5M LL0-0.5M	7/19/2016 7/19/2016	500 500	0.49% Botryococcus sp. 0.49% Cocconeis sp.	Chlorophyta Bacillariophyta	Trebouxiophyceae Bacillariophyceae	Trebouxiales Cocconeidales	Botryococcaceae Cocconeidaceae	Botryococcus	sp.	1	24.00	24	204 204	4889 204	0.41 0.41	9.78 0.41	101.94 2940.53	996.73 1197.99
7475.09-01	LL0-0.5M	7/19/2016	500 500	0.49% Cyclotella spp.	Bacillariophyta	Mediophyceae	Stephanodiscales	Stephanodiscaceae	Cocconeis Cyclotella	sp. spp.	11	1.00 1.00	11	204	204 2241	4.48	4.48	3463.61	15522.09
7475.09-01	LL0-0.5M	7/19/2016	500	0.49% Dictyosphaerium spp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Chlorellaceae	Dictyosphaerium	spp.	2	8.00	16	407	3259	0.81	6.52	46.21	301.20
7475.09-01	LL0-0.5M	7/19/2016	500	0.49% Dinobryon spp.	Ochrophyta	Chrysophyceae	Chromulinales	Dinobryaceae	Dinobryon	spp.	1	1.00	1	204	204	0.41	0.41	2787.64	1135.71
7475.09-01	LL0-0.5M	7/19/2016	500	0.49% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	20	1.00	20	4074	4074	8.15	8.15	1256.64	10239.26
7475.09-01 7475.09-01	LL0-0.5M LL0-0.5M	7/19/2016 7/19/2016	500 500	0.49% Gomphonema spp. 0.49% Hannaea sp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Fragilariophyceae	Cymbellales Licmophorales	Gomphonemataceae Ulnariaceae	Gomphonema Hannaea	spp. sp.	6 13	1.00 1.00	6 13	1222 2648	1222 2648	2.44 5.30	2.44 5.30	742.20 1759.29	1814.27 9317.73
7475.09-01	LL0-0.5M	7/19/2016	500 500	0.49% Monoraphidium sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Selenastraceae	Monoraphidium	sp. sp.	1	1.00	13	2048	2048	0.41	0.41	254.51	103.69
7475.09-01	LL0-0.5M	7/19/2016	500	0.49% Navicula spp.	Bacillariophyta	Bacillariophyceae	Naviculales	Naviculaceae	Navicula	spp.	4	1.00	4	815	815	1.63	1.63	1061.86	1730.44
7475.09-01	LL0-0.5M	7/19/2016	500	0.49% Nitzschia spp.	Bacillariophyta	Bacillariophyceae	Bacillariales	Bacillariaceae	Nitzschia	spp.	4	1.00	4	815	815	1.63	1.63	6146.53	10016.56
7475.09-01	LL0-0.5M	7/19/2016	500	0.49% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Oocystis	sp.	40	4.00	160	8148	32593	16.30	65.19	5445.43	354961.17
7475.09-01 7475.09-01	LL0-0.5M LL0-0.5M	7/19/2016 7/19/2016	500 500	0.49% Pediastrum sp. 0.49% Scenedesmus spp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Sphaeropleales	Hydrodictyaceae Scenedesmaceae	Pediastrum Scenedesmus	sp. spp.	5 107	24.00 8.00	120 856	1019 21796	24444 174370	2.04 43.59	48.89 348.74	363.00 1649.34	17746.67 575190.66
7475.09-01	LL0-0.5M	7/19/2016	500	0.49% Sphaerocystis sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	spp. sp.	33	12.00	396	6722	80667	13.44	161.33	268.08	43250.72
7475.09-02	LL1-0.5M	7/19/2016	515	0.34% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	37	30.00	1110	10912	327346	21.19	635.62	1.20	765.29
7475.09-02	LL1-0.5M	7/19/2016	515	0.34% Botryococcus sp.	Chlorophyta	Trebouxiophyceae	Trebouxiales	Botryococcaceae	Botryococcus	sp.	1	18.00	18	295	5308	0.57	10.31	47.31	487.63
7475.09-02	LL1-0.5M	7/19/2016	515	0.34% Crucigeniella sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Crucigeniella	sp.	5	8.00	40	1475	11796	2.86	22.91	64.00	1465.94
7475.09-02 7475.09-02	LL1-0.5M LL1-0.5M	7/19/2016 7/19/2016	515 515	0.34% Cyclotella spp. 0.34% Dictyosphaerium spp.	Bacillariophyta Chlorophyta	Mediophyceae Trebouxiophyceae	Stephanodiscales Chlorellales	Stephanodiscaceae Chlorellaceae	Cyclotella Dictyosphaerium	spp. spp.	2	1.00 18.00	2 54	590 885	590 15925	1.15 1.72	1.15 30.92	2268.23 58.89	2597.73 1821.07
7475.09-02	LL1-0.5M	7/19/2016	515	0.34% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp. spp.	4	10.75	43	1180	12681	2.29	24.62	1523.67	37517.77
7475.09-02	LL1-0.5M	7/19/2016	515	0.34% Hannaea sp.	Bacillariophyta	Fragilariophyceae	Licmophorales	Ulnariaceae	Hannaea	sp.	6	1.00	6	1769	1769	3.44	3.44	995.26	3419.51
7475.09-02	LL1-0.5M	7/19/2016	515	0.34% Navicula spp.	Bacillariophyta	Bacillariophyceae	Naviculales	Naviculaceae	Navicula	spp.	1	1.00	1	295	295	0.57	0.57	1809.56	1036.21
7475.09-02	LL1-0.5M	7/19/2016	515	0.34% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Oocystis	sp.	106	2.00	212	31260	62520	60.70	121.40	4208.35	510887.13
7475.09-02 7475.09-02	LL1-0.5M LL1-0.5M	7/19/2016 7/19/2016	515 515	0.34% Pediastrum sp. 0.34% Scenedesmus spp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Sphaeropleales	Hydrodictyaceae Scenedesmaceae	Pediastrum Scenedesmus	sp.	6 82	24.00 8.00	144 656	1769 24182	42467 193459	3.44 46.96	82.46 375.65	157.68 1503.52	13002.18 564792.52
7475.09-02	LL1-0.5M	7/19/2016	515	0.34% Sphaerocystis sp.	Chlorophyta Chlorophyta	Chlorophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	spp. sp.	60	8.00	480	17694	141555	40.90 34.36	274.86	294.01	80812.57
7475.09-03	LL2-0.5M	7/19/2016	560	0.17% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	39	30.77	1200	22372	688356	39.95	1229.21	1.23	1514.38
7475.09-03	LL2-0.5M	7/19/2016	560	0.17% Ceratium sp.	Miozoa	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratium	sp.	1	1.00	1	574	574	1.02	1.02	333794.22	341918.31
7475.09-03	LL2-0.5M	7/19/2016	560	0.17% Dictyosphaerium spp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Chlorellaceae	Dictyosphaerium	spp.	4	12.00	48	2295	27534	4.10	49.17	58.38	2870.30
7475.09-03 7475.09-03	LL2-0.5M LL2-0.5M	7/19/2016 7/19/2016	560 560	0.17% Hannaea sp. 0.17% Oocystis sp.	Bacillariophyta	Fragilariophyceae Trebouxiophyceae	Licmophorales Chlorellales	Ulnariaceae	Hannaea	sp.	3	1.00 3.00	3 195	1721 37286	1721 111858	3.07 66.58	3.07 199.75	1169.93 2123.72	3595.21 424204.04
7475.09-03	LL2-0.5M	7/19/2016	560 560	0.17% Pediastrum sp.	Chlorophyta Chlorophyta	Chlorophyceae	Sphaeropleales	Oocystaceae Hydrodictyaceae	Oocystis Pediastrum	sp. sp.	2	24.00	48	1147	27534	2.05	49.17	1152.00	56641.83
7475.09-03	LL2-0.5M	7/19/2016	560	0.17% Scenedesmus spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	spp.	118	16.00	1888	67688	1083013	120.87	1933.95	2088.63	4039310.69
7475.09-03	LL2-0.5M	7/19/2016	560	0.17% Sphaerocystis sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	sp.	77	8.00	616	44169	353356	78.87	630.99	421.16	265748.84
7475.09-04	LL3-0.5M	7/20/2016	520	0.54% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	64	20.00	1280	11931	238630	22.95	458.90	1.18	541.74
7475.09-04 7475.09-04	LL3-0.5M LL3-0.5M	7/20/2016 7/20/2016	520 520	0.54% Crucigeniella sp. 0.54% Cryptomonas spp.	Chlorophyta	Trebouxiophyceae	Chlorellales Cryptomonadales	Oocystaceae	Crucigeniella	sp.	5	16.00	80	932 559	14914	1.79 1.08	28.68	343.00 2389.18	9837.75 2569.70
7475.09-04	LL3-0.5M	7/20/2016	520 520	0.54% Cryptomonas spp. 0.54% Dinobryon sp.	Cryptophyta Ochrophyta	Cryptophyceae Chrysophyceae	Chromulinales	Cryptomonadaceae Dinobryaceae	Cryptomonas Dinobryon	spp. sp.	2	1.00 1.00	2	373	559 373	0.72	1.08 0.72	1911.19	1370.39
7475.09-04	LL3-0.5M	7/20/2016	520	0.54% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	45	10.00	450	8389	83893	16.13	161.33	1771.86	285859.70
7475.09-04	LL3-0.5M	7/20/2016	520	0.54% Gomphonema spp.	Bacillariophyta	Bacillariophyceae	Cymbellales	Gomphonemataceae	Gomphonema	spp.	6	1.00	6	1119	1119	2.15	2.15	785.40	1689.48
7475.09-04	LL3-0.5M	7/20/2016	520	0.54% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Oocystis	sp.	21	4.00	84	3915	15660	7.53	30.12	1357.17	40871.86
7475.09-04 7475.09-04	LL3-0.5M LL3-0.5M	7/20/2016	520	0.54% Pediastrum sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Pediastrum	sp.	1	32.00	32	186	5966 178972	0.36 43.02	11.47 344.18	360.00	4130.13 588749.36
7475.09-04	LL3-0.5M	7/20/2016 7/20/2016	520 520	0.54% Scenedesmus spp. 0.54% Sphaerocystis sp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Chlamydomonadales	Scenedesmaceae Sphaerocystidaceae	Scenedesmus Sphaerocystis	spp. sp.	120 61	8.00 8.00	960 488	22372 11372	90978	43.02 21.87	174.96	1710.60 394.57	69032.61
7475.09-04	LL3-0.5M	7/20/2016	520	0.54% Staurastrum sp.	Charophyta	Conjugatophyceae	Desmidiales	Desmidiaceae	Staurastrum	sp.	3	1.00	3	559	559	1.08	1.08	28352.87	30495.09
7475.09-05	LL4-0.5M	7/20/2016	565	0.06% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	21	20.00	420	34478	689554	61.02	1220.45	1.50	1829.45
7475.09-05	LL4-0.5M	7/20/2016	565	0.06% Asterionella sp.	Bacillariophyta	Fragilariophyceae	Tabellariales	Tabellariaceae	Asterionella	sp.	3	8.00	24	4925	39403	8.72	69.74	855.52	59663.90
7475.09-05	LL4-0.5M	7/20/2016	565 565	0.06% Aulacoseira sp.	Bacillariophyta	Coscinodiscophyceae	Aulacoseirales	Aulacoseiraceae	Aulacoseira	sp.	1	22.00	22	1642	36120	2.91	63.93	962.11	61506.29 2588011 85
7475.09-05 7475.09-05	LL4-0.5M LL4-0.5M	7/20/2016 7/20/2016	565 565	0.06% Ceratium sp. 0.06% Cosmarium spp.	Miozoa Charophyta	Dinophyceae Conjugatophyceae	Gonyaulacales Desmidiales	Ceratiaceae Desmidiaceae	Ceratium Cosmarium	sp. spp.	3 2	1.00 1.00	3 2	4925 3284	4925 3284	8.72 5.81	8.72 5.81	296978.68 6335.55	2588911.85 36820.08
7475.09-05	LL4-0.5M	7/20/2016	565	0.06% Crucigeniella sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Crucigeniella	spp. sp.	7	4.00	28	11493	45970	20.34	81.36	512.00	41658.03
7475.09-05	LL4-0.5M	7/20/2016	565	0.06% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	3	1.00	3	4925	4925	8.72	8.72	1432.57	12488.40
7475.09-05	LL4-0.5M	7/20/2016	565	0.06% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	114	20.00	2280	187165	3743295	331.27	6625.30	1240.93	8221527.54
7475.09-05	LL4-0.5M	7/20/2016	565	0.06% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Oocystis	sp.	26	4.00	104	42687	170747	75.55	302.21	2035.23	615059.52
7475.09-05 7475.09-05	LL4-0.5M LL4-0.5M	7/20/2016 7/20/2016	565 565	0.06% Peridinium sp. 0.06% Scenedesmus spp.	Miozoa Chlorophyta	Dinophyceae Chlorophyceae	Peridiniales Sphaeropleales	Peridiniaceae Scenedesmaceae	Peridinium Scenedesmus	sp. spp.	1 95	1.00 16.00	1 1520	1642 155971	1642 2495530	2.91 276.05	2.91 4416.87	6924.59 1963.50	20121.72 8672496.28
7475.09-05	LL4-0.5M	7/20/2016	565	0.06% Sphaerocystis sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	spp. sp.	93 41	8.00	328	67314	538509	119.14	953.11	316.25	301423.07
7475.09-06	LL5-0.5M	7/20/2016	560	0.12% Achnanthes sp.	Bacillariophyta	Bacillariophyceae	Mastogloiales	Achnanthaceae	Achnanthes	sp.	3	1.00	3	2582	2582	4.61	4.61	247.40	1140.74
7475.09-06	LL5-0.5M	7/20/2016	560	0.12% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	17	30.00	510	14632	438959	26.13	783.85	3.27	2564.77
7475.09-06	LL5-0.5M	7/20/2016	560	0.12% Asterionella sp.	Bacillariophyta	Fragilariophyceae	Tabellariales	Tabellariaceae	Asterionella	sp.	6	8.00	48	5164	41314	9.22	73.77	744.93	54957.16
7475.09-06 7475.09-06	LL5-0.5M LL5-0.5M	7/20/2016 7/20/2016	560 560	0.12% Aulacoseira sp. 0.12% Ceratium sp.	Bacillariophyta	Coscinodiscophyceae	Aulacoseirales	Aulacoseiraceae Ceratiaceae	Aulacoseira	sp.	9	8.00	72	7746 6025	61971 6025	13.83 10.76	110.66 10.76	1095.04 319896.60	121179.22 3441699.31
7475.09-06	LL5-0.5M LL5-0.5M	7/20/2016	560 560	0.12% Ceratium sp. 0.12% Cryptomonas spp.	Miozoa Cryptophyta	Dinophyceae Cryptophyceae	Gonyaulacales Cryptomonadales	Cryptomonadaceae	Ceratium Cryptomonas	sp. spp.	1	1.00 1.00	1	6025 2582	6025 2582	4.61	4.61	2709.62	12493.83
7475.09-06	LL5-0.5M	7/20/2016	560	0.12% Dinobryon sp.	Ochrophyta	Chrysophyceae	Chromulinales	Dinobryaceae	Dinobryon	spp. sp.	3	1.00	3	2582	2582	4.61	4.61	2743.13	12648.34
7475.09-06	LL5-0.5M	7/20/2016	560	0.12% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	93	11.29	1050	80045	903738	142.94	1613.82	1054.79	1702239.11
7475.09-06	LL5-0.5M	7/20/2016	560	0.12% Monoraphidium sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Selenastraceae	Monoraphidium	sp.	15	1.00	15	12911	12911	23.05	23.05	96.54	2225.65
7475.09-06	LL5-0.5M	7/20/2016	560	0.12% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Oocystis	sp.	16	4.00	64	13771	55085	24.59	98.37	1946.74	191493.13
7475.09-06 7475.09-06	LL5-0.5M LL5-0.5M	7/20/2016 7/20/2016	560 560	0.12% Pediastrum sp. 0.12% Scenedesmus spp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Sphaeropleales	Hydrodictyaceae Scenedesmaceae	Pediastrum Scenedesmus	sp.	5 123	24.00 16.00	120 1968	4304 105866	103284 1693863	7.68 189.05	184.44 3024.76	360.00 1492.26	66397.08 4513713.41
7475.09-06	LL5-0.5M	7/20/2016	560 560	0.12% Scenedesmus spp. 0.12% Sphaerocystis sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	spp. sp.	8	1.00	1900	6886	6886	12.30	12.30	295.40	3632.18
						· · · · · · · · · · · · · · · · · · ·	,			r	-		-						

		v	olume	Perce	nt							Number	Cells per			ι	Inits per mL (in	Cells per mL (in		
EcoAnalysts	c	Collection R		Count							Specie		Natural	Number	Units /		sample	sample	AVG_BV	Biovolume
Sample ID			l (mL)	d	Taxon	Division	Class	Order	Family	Genus	S	Units	Unit	of Cells		Cells/ sample r	,	received)	(µ³)	(µ³/mL)
7475.11-01 7475.11-01	LL0-0.5M LL0-0.5M		555 555		1% Aphanocapsa spp. 1% Ceratium sp.	Cyanobacteri Miozoa	a Cyanophyceae Dinophyceae	Synechococcales Gonyaulacales	Merismopediaceae Ceratiaceae	Aphanocapsa Ceratium	spp.	79	40.51 1.00	3200	71810.77 909.00	2908790.77 909.00	129.39 1.64	5241.06 1.64	1.84 1214912.78	9638.32 1989823.81
7475.11-01	LL0-0.5M		555		1% Crucigeniella sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Crucigeniella	sp. sp.	52	4.15	216	47267.85	196343.38	85.17	353.77	426.96	151045.72
7475.11-01	LL0-0.5M		555		1% Dictyosphaerium spp		Trebouxiophyceae	Chlorellales	Chlorellaceae	Dictyosphaeriu		5	8.00	40	4544.99	36359.88	8.19	65.51	25.79	1689.39
7475.11-01 7475.11-01	LL0-0.5M LL0-0.5M		555 555		1% Oocystis sp. 1% Pediastrum sp.	Chlorophyta Chlorophyta	Trebouxiophyceae Chlorophyceae	Chlorellales Sphaeropleales	Oocystaceae Hydrodictyaceae	Oocystis Pediastrum	sp. sp.	13	2.00 24.00	26 24	11816.96 909.00	23633.93 21815.93	21.29 1.64	42.58 39.31	1809.56 84.00	77057.54 3301.87
7475.11-01	LL0-0.5M		555		1% Scenedesmus sp.	Chlorophyta		Sphaeropleales	Scenedesmaceae	Scenedesmus	sp.	144	12.00	1728	130895.58	1570747.02	235.85	2830.17	1309.00	3704690.33
7475.11-01	LL0-0.5M		555		1% Sphaerocystis sp.	Chlorophyta	Chlorophyceae	•		Sphaerocystis	sp.	15	8.00	120	13634.96	109079.65	24.57	196.54	200.36	39378.54
7475.11-01 7475.11-01	LL0-0.5M LL0-0.5M	8/10/2016 8/10/2016	555 555		1% Staurastrum sp. 1% Tetrastrum sp.	Charophyta Chlorophyta	Conjugatophyceae Chlorophyceae	Desmidiales Sphaeropleales	Desmidiaceae Scenedesmaceae	Staurastrum Tetrastrum	sp. sp.	1	1.00 4.00	1 12	909.00 2726.99	909.00 10907.97	1.64 4.91	1.64 19.65	40463.71 381.70	66272.79 7502.01
7475.11-02		8/10/2016	550	0.09	9% Aphanocapsa spp.		a Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	49	40.82	2000	53394.70	2179375.33	97.08	3962.50	1.70	6724.36
7475.11-02		8/10/2016	550		9% Ceratium sp.	Miozoa	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratium	sp.	1	1.00	1	1089.69	1089.69	1.98	1.98	311724.53	617604.32
7475.11-02 7475.11-02		8/10/2016 8/10/2016	550 550		9% Crucigeniella sp.9% Dictyosphaerium spp	Chlorophyta Chlorophyta	Trebouxiophyceae Trebouxiophyceae	Chlorellales Chlorellales	Oocystaceae Chlorellaceae	Crucigeniella Dictyosphaeriu	sp. m spp.	75 35	4.00 10.00	300 350	81726.57 38139.07	326906.30 381390.68	148.59 69.34	594.38 693.44	614.13 43.91	365020.60 30445.38
7475.11-02	LL1-0.5M	8/10/2016	550	0.09	9% Fragilaria sp.		a Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	sp.	6	1.00	6	6538.13	6538.13	11.89	11.89	1209.51	14378.09
7475.11-02		8/10/2016	550		9% Oocystis sp.	Chlorophyta		Chlorellales	Oocystaceae	Oocystis	sp.	12	2.00	24	13076.25	26152.50	23.78	47.55	2300.69	109397.97
7475.11-02 7475.11-02		8/10/2016 8/10/2016	550 550		9% Scenedesmus sp.9% Sphaerocystis sp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Chlamydomonadales	Scenedesmaceae Sphaerocystidaceae	Scenedesmus Sphaerocystis	sp. sp.	125 3	14.00 8.00	1750 24	136210.96 3269.06	1906953.41 26152.50	247.66 5.94	3467.19 47.55	2035.23 278.26	7056518.15 13231.36
7475.11-02	LL1-0.5M	8/10/2016	550	0.09	9% Tetrastrum sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Tetrastrum	sp.	1	4.00	4	1089.69	4358.75	1.98	7.93	113.10	896.29
7475.11-03		8/10/2016	540		6% Aphanocapsa spp.	•		Synechococcales	Merismopediaceae	Aphanocapsa	spp.	78	35.90	2800	124619.07	4473504.90	230.78	8284.27	2.23	18473.92
7475.11-03 7475.11-03		8/10/2016 8/10/2016	540 540		 6% Crucigeniella sp. 6% Dictyosphaerium spp 	Chlorophyta . Chlorophyta	Trebouxiophyceae Trebouxiophyceae	Chlorellales Chlorellales	Oocystaceae Chlorellaceae	Crucigeniella Dictyosphaeriu	sp. m spp.	38 38	4.00 8.00	152 304	60711.85 60711.85	242847.41 485694.82	112.43 112.43	449.72 899.43	470.91 17.86	211776.88 16063.91
7475.11-03	LL2-0.5M	8/10/2016	540	0.06	5% Fragilaria spp.		a Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	15	5.00	75	23965.20	119826.02	44.38	221.90	1036.73	230049.55
7475.11-03		8/10/2016	540 540		6% Oocystis sp.	Chlorophyta		Chlorellales	Oocystaceae	Oocystis	sp.	10	2.00	20	15976.80	31953.61	29.59	59.17	1681.28	99486.73
7475.11-03 7475.11-04		8/10/2016 8/11/2016	540 560		6% Scenedesmus sp.6% Aphanocapsa spp.	Chlorophyta Cvanobacteri	Chlorophyceae a Cyanophyceae	Sphaeropleales Synechococcales	Scenedesmaceae Merismopediaceae	Scenedesmus Aphanocapsa	sp. spp.	141 26	12.00 46.15	1692 1200	225272.93 41026.84	2703275.11 1893546.48	417.17 73.26	5006.07 3381.33	1690.93 1.93	8464910.52 6525.97
7475.11-04	LL3-0.5M	8/11/2016	560	0.06	5% Aulacoseira sp.	Bacillariophyt	a Coscinodiscophyceae	Aulacoseirales	Aulacoseiraceae	Aulacoseira	sp.	10	12.50	125	15779.55	197244.43	28.18	352.22	929.13	327258.79
7475.11-04	LL3-0.5M		560		6% Carteria sp.	Chlorophyta		Chlamydomonadales			sp.	1	1.00 4.00	1	1577.96	1577.96	2.82 200.06	2.82	2120.58	5975.31
7475.11-04 7475.11-04	LL3-0.5M LL3-0.5M	8/11/2016 8/11/2016	560 560		 6% Crucigeniella sp. 6% Dictyosphaerium spp 	Chlorophyta . Chlorophyta	Trebouxiophyceae Trebouxiophyceae	Chlorellales Chlorellales	Oocystaceae Chlorellaceae	Crucigeniella Dictyosphaeriu	sp. m spp.	71 47	4.00 8.00	284 376	112034.83 74163.90	448139.33 593311.23	200.06 132.44	800.25 1059.48	453.67 26.13	363049.68 27686.44
7475.11-04	LL3-0.5M	8/11/2016	560	0.06	5% Fragilaria sp.	Bacillariophyt	a Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	sp.	5	3.00	15	7889.78	23669.33	14.09	42.27	1009.99	42688.78
7475.11-04 7475.11-04	LL3-0.5M LL3-0.5M		560		6% Gomphonema sp.6% Navicula spp.		a Bacillariophyceae a Bacillariophyceae	Cymbellales	Gomphonemataceae	Gomphonema	sp.	1	1.00 1.00	1	1577.96 1577.96	1577.96 1577.96	2.82 2.82	2.82 2.82	904.78 3534.29	2549.47 9958.85
7475.11-04	LL3-0.5M		560 560		5% Navicula spp. 5% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Naviculales Chlorellales	Naviculaceae Oocystaceae	Navicula Oocystis	spp. sp.	24	3.00	72	37870.93	113612.79	2.62 67.63	2.82	2106.87	9958.85 427442.56
7475.11-04	LL3-0.5M	8/11/2016	560	0.06	5% Scenedesmus sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	sp.	145	12.00	1740	228803.53	2745642.40	408.58	4902.93	1164.59	5709911.47
7475.11-04 7475.11-04	LL3-0.5M LL3-0.5M		560 560		 Sphaerocystis sp. Staurastrum sp. 	Chlorophyta Charophyta		Chlamydomonadales Desmidiales	Sphaerocystidaceae Desmidiaceae	Sphaerocystis Staurastrum	sp.	3	8.00 1.00	24	4733.87 1577.96	37870.93 1577.96	8.45 2.82	67.63 2.82	292.59 49709.16	19786.95 140069.35
7475.11-04	LL3-0.5M		560		5% Woronichinia sp.		a Cyanophyceae	Synechococcales	Coelosphaeriaceae	Woronichinia	sp. sp.	3	80.00	240	4733.87	378709.30	8.45	676.27	49709.10 5.24	3540.93
7475.11-05	LL4-0.5M		530		0% Achnanthes sp.	Bacillariophyt	a Bacillariophyceae	Mastogloiales	Achnanthaceae	Achnanthes	sp.	1	1.00	1	1040.06	1040.06	1.96	1.96	325.16	638.08
7475.11-05 7475.11-05		8/11/2016 8/11/2016	530 530)% Anabaena sp.)% Aphanocapsa spp.	•	a Cyanophyceae a Cyanophyceae	Nostocales Synechococcales	Nostocaceae Merismopediaceae	Anabaena Aphanocapsa	sp. spp.	2 20	115.00 50.00	230 1000	2080.12 20801.23	239214.14 1040061.49	3.92 39.25	451.35 1962.38	904.78 1.60	408369.68 3131.96
7475.11-05		8/11/2016	530		0% Aulacoseira sp.	•	a Coscinodiscophyceae	,	Aulacoseiraceae	Aulacoseira	spp. sp.	9	10.00	90	9360.55	93605.53	17.66	176.61	1073.35	189567.99
7475.11-05		8/11/2016	530		0% Ceratium sp.	Miozoa	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratium	sp.	1	1.00	1	1040.06	1040.06	1.96	1.96	203418.12	399183.69
7475.11-05 7475.11-05	LL4-0.5M LL4-0.5M		530 530		0% Cocconeis sp. 0% Crucigeniella sp.	Bacillariophyt Chlorophyta	a Bacillariophyceae Trebouxiophyceae	Cocconeidales Chlorellales	Cocconeidaceae Oocystaceae	Cocconeis Crucigeniella	sp. sp.	1	1.00 4.00	1 20	1040.06 5200.31	1040.06 20801.23	1.96 9.81	1.96 39.25	1592.79 321.42	3125.65 12614.93
7475.11-05	LL4-0.5M		530		0% Dictyosphaerium spp		Trebouxiophyceae	Chlorellales	Chlorellaceae	Dictyosphaeriu	•	43	8.37	360	44722.64	374422.14	84.38	706.46	23.76	16788.24
7475.11-05	LL4-0.5M		530		0% Fragilaria sp.			Fragilariales	Fragilariaceae	Fragilaria	sp.	25	15.00	375	26001.54	390023.06	49.06	735.89	791.68	582592.16
7475.11-05 7475.11-05	LL4-0.5M LL4-0.5M		530 530		0% Gomphonema spp. 0% Komma sp.	Bacillariophyt Cryptophyta	a Bacillariophyceae Cryptophyceae	Cymbellales Pyrenomonadales	Gomphonemataceae Chroomonadaceae	Gomphonema Komma	spp. sp.	5	1.00 1.00	5	5200.31 5200.31	5200.31 5200.31	9.81 9.81	9.81 9.81	6440.27 150.43	63191.24 1476.01
7475.11-05	LL4-0.5M		530		0% Monoraphidium sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Selenastraceae	Monoraphidium	- 1	4	1.00	4	4160.25	4160.25	7.85	7.85	206.17	1618.31
7475.11-05	LL4-0.5M		530		0% Nitzschia spp.			Bacillariales	Bacillariaceae	Nitzschia	spp.	2	1.00	2	2080.12	2080.12	3.92	3.92	25289.82	99256.49
7475.11-05 7475.11-05	LL4-0.5M LL4-0.5M		530 530		0% Oocystis sp. 0% Pediastrum sp.	Chlorophyta Chlorophyta		Chlorellales Sphaeropleales	Oocystaceae Hydrodictyaceae	Oocystis Pediastrum	sp. sp.	18 1	4.00 24.00	72 24	18721.11 1040.06	74884.43 24961.48	35.32 1.96	141.29 47.10	2155.13 240.00	304501.70 11303.31
7475.11-05	LL4-0.5M		530		0% Planktolyngbya sp.		a Cyanophyceae	Synechococcales	Leptolyngbyaceae	Planktolyngbya		28	10.00	280	29121.72	291217.22	54.95	549.47	13.50	7417.25
7475.11-05	LL4-0.5M		530		0% Scenedesmus sp.		Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	sp.	165	12.12	2000	171610.15	2080122.98	323.79	3924.76	1881.68	7385154.82
7475.11-05 7475.11-05	LL4-0.5M LL4-0.5M		530 530		0% Snowella sp. 0% Sphaerocystis sp.		a Cyanophyceae Chlorophyceae	Synechococcales Chlamydomonadales	Coelosphaeriaceae Sphaerocystidaceae	Snowella Sphaerocystis	sp. sp.	1	30.00 16.00	30 48	1040.06 3120.18	31201.84 49922.95	1.96 5.89	58.87 94.19	5.96 103.75	351.11 9773.03
7475.11-06	LL5-0.5M		510		0% Anabaena sp.		a Cyanophyceae	Nostocales	Nostocaceae	Anabaena	sp.	7	80.00	560	6915.88	553270.56	13.56	1084.84	1150.35	1247947.31
7475.11-06	LL5-0.5M		510		0% Aphanocapsa spp.	•	a Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	6	30.00	180	5927.90	177836.96	11.62	348.70	2.11	734.01
7475.11-06 7475.11-06	LL5-0.5M LL5-0.5M		510 510		0% Aulacoseira sp. 0% Carteria sp.	Bacillariophyt Chlorophyta	a Coscinodiscophyceae Chlorophyceae	Aulacoseirales Chlamvdomonadales	Aulacoseiraceae Chlamydomonadaceae	Aulacoseira Carteria	sp. sp.	20 7	10.00 1.00	200 7	19759.66 6915.88	197596.63 6915.88	38.74 13.56	387.44 13.56	1507.96 1206.37	584252.16 16359.07
7475.11-06	LL5-0.5M		510		0% Crucigeniella sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Crucigeniella	sp. sp.	52	4.00	208	51375.12	205500.49	100.74	402.94	531.44	214139.98
7475.11-06	LL5-0.5M		510		0% Dictyosphaerium spp		Trebouxiophyceae	Chlorellales	Chlorellaceae	Dictyosphaeriu		31	8.00	248	30627.48	245019.82	60.05	480.43	20.39	9795.51
7475.11-06 7475.11-06	LL5-0.5M LL5-0.5M				0% Fragilaria sp. 0% Oocystis sp.	Bacillariophyt Chlorophyta	a Bacillariophyceae Trebouxiophyceae	Fragilariales Chlorellales	Fragilariaceae Oocystaceae	Fragilaria Oocystis	sp. sp.	13 6	20.00 4.00	260 24	12843.78 5927.90	256875.62 23711.60	25.18 11.62	503.68 46.49	1526.81 3216.99	769022.13 149568.61
7475.11-06	LL5-0.5M		510		0% Pediastrum sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Pediastrum	sp.	2	24.00	48	1975.97	47423.19	3.87	92.99	429.00	39891.27
7475.11-06	LL5-0.5M		510		0% Scenedesmus sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus		164	13.41	2200	162029.23	2173562.90	317.70	4261.89	2212.21	9428170.04
7475.11-06	LL5-0.5M	0/11/2016	510	0.10	0% Tetraëdron sp.	Chiorophyta	Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Tetraëdron	sp.	1	1.00	1	987.98	987.98	1.94	1.94	364.50	706.12

Volume EcoAnalysts Sample IDCollection NoteReceive CountePercent CounteClassOrderFamilyGenussUnitsNatural NaturalNumber UnitsUnits / SampleSampleColles/SampleSampleSite IDDate0 (mL)d (mL)dTaxonDivisionClassOrderFamilyGenussUnits010024095963798437475.13-01LL0-0.5M8/24/20165550.10%Aphanocapsa spp.Cyanobactera Chlorophyta Chlorophyta TrebouxiophyceaeSynechococcales ChloreplaceaeMerismopediaceae Cryptomonadales CryptomonadalesSp.25540.00100024095963798437475.13-01LL0-0.5M8/24/20165550.10%Crucigeniella sp.Chlorophyta Cryptomonas spp.Trebouxiophyceae Cryptomonadales CryptomonadalesAphanocapsa Cryptomonadales ChlorellaceaeSp.2540.00100024095963798437475.13-01LL0-0.5M8/24/20165550.10%Cryptomonas spp.Cryptomonadales CryptomonadalesCryptomonadales Criptomonadales ChlorellaceaeCriptomonadaceae Criptomonadales ChlorellaceaeSp.1424.00877107710147475.13-01LL0-0.5M8/24/20165550.10%Dictyosphaerium sp.ChloreplaceaeChlorellaceaeChlorellaceaeDictyosphaerium sp.156.0090144578674226	sample received) 1737 986 14 156 5 9 1473	AVG_BV Biovolume (μ³) (μ³/mL) 1.77 3068.53 343.00 338326.20 502.66 6983.18 44.56 6964.35 139.57 727.12
Sample IDSite IDDated (mL)dTaxonDivisionClassOrderFamilyGenussUnitsUnitof CellsSample Cells/ sample received7475.13-01LL0-0.5M8/24/20165550.10%Aphanocapsa spp.Cyanobacteria CyanophyceaeSynechococcalesMerismopediaceaeAphanocapsa spp.2540.00100024095963798437475.13-01LL0-0.5M8/24/20165550.10%Crucigeniella sp.ChlorophytaTrebouxiophyceaeChlorellalesOocystaceaeCrucigeniellasp.1424.005681368595474372477475.13-01LL0-0.5M8/24/20165550.10%Cryptomonas spp.CryptophyceaeCryptomonadalesCryptomonadaceaeCryptomonadaceaeCryptomonadaceaeCryptomonadaceaeCryptomonassp.1424.00877107710147475.13-01LL0-0.5M8/24/20165550.10%CryptompytaCryptophyceaeCryptomonadalesCryptomonadaceaeChlorellalesChlorellalesChlorellalesChlorellalesChlorellaceaeDictyosphaerium spp.156.0090144578674226	received)	(μ³)(μ³/mL)1.773068.53343.00338326.20502.666983.1844.566964.35
7475.13-01LL0-0.5M8/24/20165550.10%Crucigeniella sp.ChlorophytaTrebouxiophyceaeChlorellalesOocystaceaeCrucigeniella sp.1424.005681368595474372477475.13-01LL0-0.5M8/24/20165550.10%Cryptomonas spp.CryptophytaCryptophyceaeCryptomonadales </th <th>986 14 156 5 9 1473</th> <th>343.00338326.20502.666983.1844.566964.35</th>	986 14 156 5 9 1473	343.00338326.20502.666983.1844.566964.35
7475.13-01LL0-0.5M8/24/20165550.10%Cryptomonas spp.CryptophytaCryptophyceaeCryptophyceaeCryptomonadalesCryptomonadaceaeCryptomonas spp.81.0087710147475.13-01LL0-0.5M8/24/20165550.10%Dictyosphaerium spp.ChlorellalesChlorellaceaeDictyosphaerium spp.156.0090144578674226	14 156 5 9 1473	502.66 6983.18 44.56 6964.35
7475.13-01 LL0-0.5M 8/24/2016 555 0.10% Dictyosphaerium spp. Chlorophyta Trebouxiophyceae Chlorellales Chlorellaceae Dictyosphaerium spp. 15 6.00 90 14457 86742 26	156 5 9 1473	44.56 6964.35
7475 12-01 LLO-0.5M 8/24/2016 555 0.10% Komma en Cruntonhuto Cruntonhuto a Duranamanadalea Chramanadaesea Komma en 2 1.00 2 2001 2001 5	9 1473	139 57 727 12
	1473	
7475.13-01LL0-0.5M8/24/20165550.10%Oocystis sp.ChlorophytaTrebouxiophyceaeChlorophyceaeChlorophyceaeChlorophyceaeChlorophyceaeChlorophyceaeScenedesmaceaeScenedesmus sp.51.005481997475.13-01LL0-0.5M8/24/20165550.10%Scenedesmus sp.ChlorophytaChlorophyceaeSphaeroplealesScenedesmaceaeScenedesmus sp.1068.00848102163817301184		5026.55 43644.85 590.10 868983.83
7475.13-01 LL0-0.5M 8/24/2016 555 0.10% Sphaerocystis sp. Chlorophyta Chlorophytae Chlamydomonadales Sphaerocystidaceae Sphaerocystis sp. 5 8.00 40 4819 38552 9	69	245.62 17061.42
7475.13-02 LL1-0.5M 8/24/2016 560 0.11% Anabaena sp. Cyanobacteria Cyanophyceae Nostocales Nostocaceae Anabaena sp. 2 90.00 180 1785 160616 3		440.47 126332.75
7475.13-02LL1-0.5M8/24/20165600.11%Aphanocapsa spp.Cyanobacteria CyanophyceaeSynechococcalesMerismopediaceaeAphanocapsa spp.3250.001600285541427700517475.13-02LL1-0.5M8/24/20165600.11%Aulacoseira sp.18.00889271392	2549 13	1.233140.94735.139370.98
7475.13-02 LL1-0.5M 8/24/2016 560 0.11% Carteria sp. Chlorophyta Chlorophyceae Chlamydomonadales Chlamydomonadaceae Carteria sp. 7 1.00 7 6246 6246 11		4347.44 48490.96
7475.13-02 LL1-0.5M 8/24/2016 560 0.11% Crucigeniella sp. Chlorophyta Trebouxiophyceae Chlorellales Oocystaceae Crucigeniella sp. 116 4.00 464 103508 414033 185		551.37 407651.09
7475.13-02LL1-0.5M8/24/20165600.11%Dictyosphaerium spp.ChlorophytaTrebouxiophyceaeChlorellalesChlorellaceaeDictyosphaerium spp.3210.0032028554285540517475.13-02LL1-0.5M8/24/20165600.11%Fragilaria sp.3210.0032028554285540517475.13-02LL1-0.5M8/24/20165600.11%Fragilaria p.Bacillariophyta BacillariophyceaeFragilarialesFragilariaceaeFragilariasp.29.00181785160623	510 29	53.27 27164.04 590.62 16939.83
7475.13-02 LL1-0.5M 8/24/2016 560 0.11% Praginana sp. Chlorophyta Trebouxiophyceae Chlorellales Occystaceae Occystis sp. 3 1.00 3 2677 2677 5		6588.97 31496.89
7475.13-02 LL1-0.5M 8/24/2016 560 0.11% Scenedesmus sp. Chlorophyta Chlorophyceae Sphaeropleales Scenedesmaceae Scenedesmus sp. 114 12.00 1368 101724 1220684 182		670.21 1460910.07
7475.13-02LL1-0.5M8/24/20165600.11%Sphaerocystis sp.ChlorophytaChlo	76 6086	268.08 20504.05 1.12 6841.11
7475.13-03 LL2-0.5M 8/24/2016 560 0.11% Aphanocapsa spp. Cyanobacteria Cyanophyceae Synechococcales Merismopediaceae Aphanocapsa spp. 44 81.82 3600 41658 3408384 74 7475.13-03 LL2-0.5M 8/24/2016 560 0.11% Aulacoseira sp. Bacillariophyta Coscinodiscophyceae Aulacoseirales Aulacoseiraceae Aulacoseira sp. 1 13.00 13 947 12308 2		2060.89 45295.50
7475.13-03 LL2-0.5M 8/24/2016 560 0.11% Ceratium sp. Miozoa Dinophyceae Gonyaulacales Ceratiaceae Ceratium sp. 3 1.00 3 2840 2840 5	5	380007.05 1927395.55
7475.13-03 LL2-0.5M 8/24/2016 560 0.11% Crucigeniella sp. Chlorophyta Trebouxiophyceae Chlorellales Occystaceae Crucigeniella sp. 96 4.00 384 90890 363561 162		274.63 178290.93
7475.13-03LL2-0.5M8/24/20165600.11% Cryptomonas spp.CryptophytaCryptophyceaeCryptomonadalesCryptomonadaceaeCryptomonas spp.31.0032840284057475.13-03LL2-0.5M8/24/20165600.11% Dictyosphaerium spp.ChlorellaceaeChlorellaceaeDictyosphaerium spp.2610.002602461624616144	5 440	2212.21 11220.30 67.21 29541.96
7475.13-03 LL2-0.5M 8/24/2016 560 0.11% Oocystis sp. Chlorophyta Trebouxiophyceae Chlorellales Oocystaceae Oocystis sp. 17 3.00 51 16095 48285 29		8444.60 728127.21
7475.13-03 LL2-0.5M 8/24/2016 560 0.11% Planktolyngbya sp. Cyanobacteria Cyanophyceae Synechococcales Leptolyngbyaceae Planktolyngbya sp. 1 28.00 28 947 26510 2		14.53 687.83
7475.13-03LL2-0.5M8/24/20165600.11%Scenedesmus sp.ChlorophytaChlorophytaChlorophyceaeSphaeroplealesScenedesmaceaeScenedesmus sp.11312.00135610698512838251917475.13-03LL2-0.5M8/24/20165600.11%Sphaerocystis sp.60.3325681189410	2293 3	499.71 1145597.88 166.83 564.09
7475.13-04 LL3-0.5M 8/25/2016 560 0.10% Anabaena sp. Cyanobacteria Cyanophyceae Nostocales Nostocaceae Anabaena sp. 11 49.09 540 10517 516267 19	-	796.33 734138.58
7475.13-04 LL3-0.5M 8/25/2016 560 0.10% Asterionella sp. Bacillariophyceae Tabellariales Tabellariaceae Asterionella sp. 6 4.00 24 5736 22945 10		556.06 22783.83
7475.13-04LL3-0.5M8/25/20165600.10%Aulacoseira sp.Bacillariophyta Coscinodiscophyceae AulacoseiralesAulacoseiraceaeAulacoseirasp.307.0021028681200770517475.13-04LL3-0.5M8/25/20165600.10%Carteria sp.ChlorophytaChlorophytaeChlorophyceaeChlamydomonadalesChlamydomonadaceaeCarteriasp.31.003286828685	359	569.41 204145.46 1077.04 5516.28
7475.13-04LL3-0.5M8/25/20165600.10% Carteria sp.Chlorophyta<	5	763210.67 3908930.81
7475.13-04 LL3-0.5M 8/25/2016 560 0.10% Cocconeis sp. Bacillariophyta Bacillariophyceae Cocconeidales Cocconeidaceae Cocconeis sp. 3 1.00 3 2868 2868 5		1123.12 5752.27
7475.13-04 LL3-0.5M 8/25/2016 560 0.10% Crucigeniella sp. Chlorophyta Trebouxiophyceae Chlorellales Oocystaceae Crucigeniella sp. 70 4.00 280 66923 267694 120 7475.13-04 LL3-0.5M 8/25/2016 560 0.10% Cryptomonas spp. Cryptophyta Cryptophyceae Cryptomonadales Cryptomonadaceae Cryptomonas spp. 14 1.00 14 13385 13385 24		669.92 320239.26 3934.32 94035.13
7475.13-04LL3-0.5M8/25/20165600.10%Cryptomonas spp.CryptophytaCryptophyceaeCryptophyceaeCryptomonadalesCryptomonadaceaeCryptomonasspp.141.00141338513385247475.13-04LL3-0.5M8/25/20165600.10%Dictyosphaerium spp.ChlorellalesChlorellaceaeDictyosphaerium spp.5210.005204971549714689		3934.32 94035.13 58.37 51822.11
7475.13-04 LL3-0.5M 8/25/2016 560 0.10% Fragilaria sp. Bacillariophyta Bacillariophyteae Fragilariales Fragilariaceae Fragilaria sp. 15 20.00 300 14341 286815 26	512	5654.87 2896249.34
7475.13-04 LL3-0.5M 8/25/2016 560 0.10% Oocystis sp. Chlorophyta Trebouxiophyceae Chlorellales Oocystis sp. 10 2.00 20 9560 19121 17	34	9490.23 324040.24
7475.13-04LL3-0.5M8/25/20165600.10%Scenedesmus sp.ChlorophytaChlorophytaChlorophytaSphaeroplealesScenedesmaceaeScenedesmus sp.11112.00133210612112734581907475.13-04LL3-0.5M8/25/20165600.10%Snowella sp.Cyanobacteria CyanophyceaeSynechococcalesCoelosphaeriaceaeSnowellasp.230.00601912573633		590.10 1341897.04 6.80 696.04
7475.13-04 LL3-0.5M 8/25/2016 560 0.10% Sphaerocystis sp. Chlorophyta Chlorophyteae Chlamydomonadales Sphaerocystidaceae Sphaerocystis sp. 7 10.00 70 6692 66923 12		179.59 21462.59
7475.13-04 LL3-0.5M 8/25/2016 560 0.10% Staurastrum sp. Charophyta Conjugatophyceae Desmidiales Desmidiaceae Staurastrum sp. 3 1.00 3 2868 2868 5	-	10308.35 52796.21
7475.13-05 LL4-0.5M 8/25/2016 560 0.18% Achnanthes spp. Bacillariophyta Bacillariophyceae Mastogloiales Achnanthaceae Achnanthes spp. 5 1.00 5 2785 2785 5 7475.13-05 LL4-0.5M 8/25/2016 560 0.18% Anabaena sp. Cyanobacteria Cyanophyceae Nostocales Nostocaceae Anabaena sp. 11 40.00 440 6126 245047 11	5 438	339.291687.151150.35503373.75
7475.13-05 LL4-0.5M 8/25/2016 560 0.18% Aphanocapsa spp. Cyanobacteria Cyanophyceae Synechococcales Merismopediaceae Aphanocapsa spp. 4 40.00 160 2228 89108 4	159	0.91 144.01
7475.13-05 LL4-0.5M 8/25/2016 560 0.18% Asterionella sp. Tabellariales Tabellariaceae Asterionella sp. 1 8.00 8 557 4455 1 7475.13-05 LL4-0.5M 8/25/2016 560 0.18% Asterionella sp. 1 8.00 8 557 4455 1 7475.13-05 LL4-0.5M 8/25/2016 500 0.18% Asterionella sp. 1 8.00 8 557 4455 1 7475.13-05 LL4-0.5M 8/25/2016 500 0.18% Asterionella sp. 1 8.00 8 557 4455 1 7475.13-05 LL4-0.5M 8/25/2016 500 0.18% Asterionella sp. 1 8.00 8 557 4455 1	8	1303.76 10372.82
7475.13-05LL4-0.5M8/25/20165600.18%Aulacoseira sp.Bacillariophyta Coscinodiscophyceae AulacoseiralesAulacoseiraceaeAulacoseirasp.296.001741615196905297475.13-05LL4-0.5M8/25/20165600.18%Carteria sp.ChlorophytaChlorophytaChlorophyceaeChlamydomonadalesChlamydomonadaceaeCarteriasp.51.005278527855	173	641.47 111003.67 628.32 3124.35
7475.13-05 LL4-0.5M 8/25/2016 560 0.18% Chroococcus sp. Cyanobacteria Cyanophyceae Chroococcales Chroococcaceae Chroococcus sp. 1 8.00 8 557 4455 1	8	65.45 520.73
7475.13-05 LL4-0.5M 8/25/2016 560 0.18% Coelastrum sp. Chlorophyta Chlorophyceae Scenedesmaceae Coelastroideae Coelastrum sp. 1 8.00 8 557 4455 1	8	268.08 2132.89
7475.13-05LL4-0.5M8/25/20165600.18%Crucigeniella sp.ChlorophytaTrebouxiophyceaeChlorellalesOocystaceaeCrucigeniellasp.234.00921280951237237475.13-05LL4-0.5M8/25/20165600.18%Cryptomonas spp.CryptophytaCryptophytaCryptophytaeeCryptomonadalesCryptomonadaceaeCryptomonas spp.71.007389838987	91 7	166.3815222.462127.1214808.09
7475.13-05 LL4-0.5M 8/25/2016 560 0.18% Cymbella sp. Bacillariophyta Bacillariophyteae Cymbellales Cymbellaceae Cymbella sp. 1 1.00 1 557 557 1	1	1190.00 1183.47
7475.13-05 LL4-0.5M 8/25/2016 560 0.18% Fragilaria sp. Bacillariophyta Bacillariophyteae Fragilariales Fragilariaceae Fragilaria sp. 38 10.00 380 21163 211632 38		553.71 209253.08
7475.13-05LL4-0.5M8/25/20165600.18%Microcystis sp.Cyanobacteria CyanophyceaeChroococcalesMicrocystaceaeMicrocystissp.230.006011143341627475.13-05LL4-0.5M8/25/20165600.18%Oocystis sp.ChlorophytaTrebouxiophyceaeChlorellalesOocystaceaeOocystissp.112.002261261225211	60 22	220.89 13180.81 593.76 12991.02
7475.13-05 LL4-0.5M 8/25/2016 560 0.18% Planktolyngbya sp. Cyanobacteria Cyanophyceae Synechococcales Leptolyngbyaceae Planktolyngbya sp. 7 20.00 140 3898 77970 7	139	16.33 2274.21
7475.13-05 LL4-0.5M 8/25/2016 560 0.18% Scenedesmus sp. Chlorophyta Chlorophyceae Sphaeropleales Scenedesmus sp. 149 12.00 1788 82982 995783 148		1809.56 3217724.14
7475.13-05LL4-0.5M8/25/20165600.18%Staurastrum sp.CharophytaConjugatophyceaeDesmidialesDesmidiaceaeStaurastrumsp.51.0052785278557475.13-05LL4-0.5M8/25/20165600.18%Woronichinia sp.Cyanobacteria CyanophyceaeSynechococcalesCoelosphaeriaceaeWoronichiniasp.150.0050557278461	5 50	13135.78 65318.32 6.28 312.43
7475.13-06 LL5-0.5M 8/25/2016 560 0.17% Anabaena sp. Cyanobacteria Cyanophyceae Nostocales Nostocaceae Anabaena sp. 5 40.00 200 2959 118347 5		817.28 172719.12
7475.13-06LL5-0.5M8/25/20165600.17% Aulacoseira sp.Bacillariophyta Coscinodiscophyceae AulacoseiralesAulacoseiraceaeAulacoseirasp.113.001359276931	14	461.23 6335.69
7475.13-06LL5-0.5M8/25/20165600.17%Botryococcus sp.ChlorophytaTrebouxiophyceaeTrebouxialesBotryococcaceaeBotryococcus sp.21.0021183118327475.13-06LL5-0.5M8/25/20165600.17%Carteria sp.ChlorophytaChlorophytaChlorophyceaeChlamydomonadalesChlamydomonadaceaeCarteriaSp.51.005295929595	2 5	74.22 156.85 2120.58 11203.70
7475.13-06 LLS-0.5M 6/25/2016 500 0.17% Canena sp. Childrophyceae Childrophyceae Childrophyceae Childrophyceae Canena sp. 5 1.00 5 2959	3	208677.15 661506.50
7475.13-06 LL5-0.5M 8/25/2016 560 0.17% Cryptomonas spp. Cryptophyta Cryptophyceae Cryptomonadales Cryptomonadaceae Cryptomonas spp. 6 1.00 6 3550 3550 6	6	5598.32 35493.33
7475.13-06LL5-0.5M8/25/20165600.17%Dictyosphaerium spp.ChlorophytaTrebouxiophyceaeChlorellalesChlorellaceaeDictyosphaerium spp.812.009647345680687475.13-06LL5-0.5M8/25/20165600.17%Fragilaria sp.Bacillariophyta BacillariophyteaeFragilarialesFragilariaceaeFragilariasp.1120.00220650913018112		30.213064.10967.61224937.28
7475.13-06 LL5-0.5M 8/25/2016 560 0.17% Fragilaria sp. Bacillariophyta Bacillariophyteae Fragilariales Fragilaria sp. 11 20.00 220 6509 130161 12 7475.13-06 LL5-0.5M 8/25/2016 560 0.17% Gomphonema sp. Bacillariophyta Bacillariophyteae Cymbellales Gomphonemataceae Gomphonema sp. 1 1.00 1 592 592 1	. 232	640.89 677.20
7475.13-06 LL5-0.5M 8/25/2016 560 0.17% Melosira sp. Bacillariophyta Coscinodiscophyceae Melosirales Melosira cae Melosira sp. 1 1.00 1 592 592 1	1	25446.90 26888.89
7475.13-06LL5-0.5M8/25/20165600.17% Microcystis sp.Cyanobacteria CyanophyceaeChroococcalesMicrocystaceaeMicrocystissp.2263.457801337324615522397475.13-06LL5-0.5M8/25/20165600.17% Monoraphidium sp.ChlorophytaChlorophyteaeSphaeroplealesSelenastraceaeMonoraphidium sp.11.0015925921	824	113.10 93214.54 32.99 34.86
7475.13-06LL5-0.5M8/25/20165600.17%Monoraphidium sp.ChlorophytaChlorophytaChlorophyta eSphaeroplealesSelenastraceaeMonoraphidium sp.11.00159259217475.13-06LL5-0.5M8/25/20165600.17%Oocystis sp.ChlorophytaTrebouxiophyceaeChlorellalesOocystaceaeOocystissp.64.00243550142026	25	32.99 34.86 1206.37 30593.59
7475.13-06 LL5-0.5M 8/25/2016 560 0.17% Scenedesmus sp. Chlorophyta Chlorophyceae Sphaeropleales Scenedesmus sp. 56 0.02 672 33137 397645 59	710	519.54 368915.64
7475.13-06LL5-0.5M8/25/20165600.17%Snowella sp.Cyanobacteria CyanophyceaeSynechococcalesCoelosphaeriaceaeSnowellasp.11.00505922958717475.13-06LL5-0.5M8/25/20165600.17%Staurastrum sp.CharophytaConjugatophyceaeDesmidialesDesmidiaceaeStaurastrum sp.31.003177517753	53 3	7.51396.9411384.3536088.37
7475.13-06 LL5-0.5M 8/25/2016 560 0.17% Staurastrum sp. Charophyta Conjugatophyceae Desmidiales Desmidiaceae Staurastrum sp. 3 1.00 3 1775 1775 3		1007.00 30000.37

Avista Phytoplankton 2016 (Batches 8&9) Taxa Report with Biovolumes

EcoAnalysts Sample ID	Site ID	Volume Re Collection Date (mL)	eceived Perc Cou		Division	Class	Order	Family	Genus	Species	Number of Cells Natural Units	•	umber of Cells	Units / Sample	Cells/ sample	· · · ·	Cells per mL (in ample received)	AVG_BV (µ³)	Biovolume (µ³/mL)
7475.15-01	LL0-0.5M	9/6/2016	515	0.03% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	39	3200.00	82.05128205	141487.65	11609243.31	274.73	22542.22	1.77	39832.10
7475.15-01 7475.15-01	LL0-0.5M LL0-0.5M	9/6/2016 9/6/2016	515 515	0.03% Aulacoseira sp.	Bacillariophyta	Coscinodiscophyceae	Aulacoseirales Chlorellales	Aulacoseiraceae	Aulacoseira	sp.	5	35.00 392.00	7	18139.44 355533.08	126976.10 1422132.31	35.22 690.36	246.56 2761.42	819.96 512.00	202164.69 1413848.04
7475.15-01	LL0-0.5M	9/6/2016	515	0.03% Crucigeniella sp. 0.03% Cryptomonas spp.	Chlorophyta Cryptophyta	Trebouxiophyceae Cryptophyceae	Cryptomonadales	Oocystaceae Cryptomonadaceae	Crucigeniella Cryptomonas	sp. spp.	3	392.00 3.00	4	10883.67	10883.67	21.13	2761.42 21.13	15219.97	321648.65
7475.15-01	LL0-0.5M	9/6/2016	515	0.03% Dictyosphaerium spp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Chlorellaceae	Dictyosphaerium	spp.	14	140.00	10	50790.44	507904.39	98.62	986.22	14.17	13975.75
7475.15-01 7475.15-01	LL0-0.5M LL0-0.5M	9/6/2016 9/6/2016	515 515	0.03% Fragilaria sp. 0.03% Oocystis sp.	Bacillariophyta Chlorophyta	Bacillariophyceae Trebouxiophyceae	Fragilariales Chlorellales	Fragilariaceae Oocystaceae	Fragilaria Oocystis	sp. sp.	5 15	9.00 60.00	1.8 4	18139.44 54418.33	32651.00 217673.31	35.22 105.67	63.40 422.67	907.14 333.53	57512.35 140972.84
7475.15-01	LL0-0.5M	9/6/2016	515	0.03% Scenedesmus spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	spp.	113	1356.00	12	409951.40	4919416.85	796.02	9552.27	3067.96	29305988.28
7475.15-01 7475.15-01	LL0-0.5M LL0-0.5M	9/6/2016 9/6/2016	515 515	0.03% Snowella sp.	Cyanobacteria Chlorophyta	Cyanophyceae	Synechococcales	Coelosphaeriaceae	Snowella	sp. sp.	5	200.00	40	18139.44 14511.55	725577.71 116092.43	35.22 28.18	1408.89 225.42	4.19 143.79	5901.83 32414.13
7475.15-01	LL0-0.5M	9/6/2016	515	0.03% Sphaerocystis sp. 0.04% Achnanthidium sp.	Chlorophyta Bacillariophyta	Chlorophyceae Bacillariophyceae	Chlamydomonadales Cocconeidales	Sphaerocystidaceae Achnanthidiaceae	Sphaerocystis Achnanthidium	sp. sp.	4	32.00 1.00	o 1	2747.33	2747.33	5.28	5.28	143.79	622.43
7475.15-02	LL1-0.5M	9/6/2016	520	0.04% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	43	258.00	6	118135.32	708811.93	227.18	1363.10	1.05	1427.17
7475.15-02 7475.15-02	LL1-0.5M LL1-0.5M	9/6/2016 9/6/2016	520 520	0.04% Carteria sp. 0.04% Crucigeniella sp.	Chlorophyta Chlorophyta	Chlorophyceae Trebouxiophyceae	Chlamydomonadales Chlorellales	Chlamydomonadaceae Oocystaceae	Carteria Crucigeniella	sp. sp.	5 139	5.00 556.00	1 4	13736.67 381879.30	13736.67 1527517.18	26.42 734.38	26.42 2937.53	628.32 274.63	16598.09 806720.01
7475.15-02	LL1-0.5M	9/6/2016	520	0.04% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	3	3.00	1	8242.00	8242.00	15.85	15.85	2389.18	37868.52
7475.15-02	LL1-0.5M	9/6/2016	520	0.04% Dictyosphaerium spp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Chlorellaceae	Dictyosphaerium	spp.	5	78.00	15.6 193.3333333	13736.67	214291.98	26.42	412.10	30.21	12447.89
7475.15-02 7475.15-02	LL1-0.5M LL1-0.5M	9/6/2016 9/6/2016	520 520	0.04% Microcystis sp. 0.04% Oocystis sp.	Cyanobacteria Chlorophyta	Cyanophyceae Trebouxiophyceae	Chroococcales Chlorellales	Microcystaceae Oocystaceae	Microcystis Oocystis	sp. sp.	3	580.00 36.00	193.3333333	8242.00 24726.00	1593453.18 98903.99	15.85 47.55	3064.33 190.20	87.11 1592.79	266946.31 302948.06
7475.15-02	LL1-0.5M	9/6/2016	520	0.04% Scenedesmus spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	spp.	124	1488.00	12	340669.30	4088031.60	655.13	7861.60	1005.31	7903344.32
7475.15-02 7475.15-02	LL1-0.5M LL1-0.5M	9/6/2016 9/6/2016	520 520	0.04% Snowella sp. 0.04% Sphaerocystis sp.	Cyanobacteria Chlorophyta	Cyanophyceae Chlorophyceae	Synechococcales Chlamydomonadales	Coelosphaeriaceae Sphaerocystidaceae	Snowella Sphaerocystis	sp. sp.	2	110.00 16.00	55 8	5494.67 5494.67	302206.64 43957.33	10.57 10.57	581.17 84.53	5.96 243.73	3466.08 20603.05
7475.15-02	LL2-0.5M	9/6/2016	540	0.03% Amphora sp.	Bacillariophyta	Bacillariophyceae	Thalassiophysales	Catenulaceae	Amphora	sp.	1	1.00	1	3804.00	3804.00	7.04	7.04	9072.00	63907.19
7475.15-03	LL2-0.5M	9/6/2016	540	0.03% Anabaena sp.	Cyanobacteria	Cyanophyceae	Nostocales	Nostocaceae	Anabaena	sp.	1	112.00	112	3804.00	426047.96	7.04	788.98	523.60	413107.94
7475.15-03 7475.15-03	LL2-0.5M LL2-0.5M	9/6/2016 9/6/2016	540 540	0.03% Aphanocapsa spp. 0.03% Aulacoseira sp.	Cyanobacteria Bacillariophyta	Cyanophyceae Coscinodiscophyceae	Synechococcales Aulacoseirales	Merismopediaceae Aulacoseiraceae	Aphanocapsa Aulacoseira	spp.	75 1	2250.00 18.00	30 18	285299.97 3804.00	8558999.16 68471.99	528.33 7.04	15850.00 126.80	1.29 569.41	20414.80 72201.69
7475.15-03	LL2-0.5M	9/6/2016	540	0.03% Crucigeniella sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Crucigeniella	sp.	53	212.00	4	201611.98	806447.92	373.36	1493.42	381.08	569110.30
7475.15-03 7475.15-03	LL2-0.5M LL2-0.5M	9/6/2016 9/6/2016	540 540	0.03% Dictyosphaerium spp. 0.03% Microcystis sp.	Chlorophyta Cyanobacteria	Trebouxiophyceae	Chlorellales Chroococcales	Chlorellaceae	Dictyosphaerium Microcystis	spp. sp.	3	3.00 40.00	1	11412.00 3804.00	11412.00 152159.99	21.13 7.04	21.13 281.78	27.57 83.83	582.54 23621.43
7475.15-03	LL2-0.5M	9/6/2016	540 540	0.03% Microcystis sp. 0.03% Oocystis sp.	Chlorophyta	Cyanophyceae Trebouxiophyceae	Chlorellales	Microcystaceae Oocystaceae	Microcystis Oocystis	sp. sp.	20	40.00	40	76079.99	152159.99	140.89	281.78	2948.91	830936.66
7475.15-03	LL2-0.5M	9/6/2016	540	0.03% Scenedesmus spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	spp.	141	1692.00	12	536363.95	6436367.37	993.27	11919.20	1336.40	15928865.00
7475.15-03 7475.15-03	LL2-0.5M LL2-0.5M	9/6/2016 9/6/2016	540 540	0.03% Snowella sp. 0.03% Sphaerocystis sp.	Cyanobacteria Chlorophyta	Cyanophyceae Chlorophyceae	Synechococcales Chlamydomonadales	Coelosphaeriaceae Sphaerocystidaceae	Snowella Sphaerocystis	sp. sp.	2 15	100.00 120.00	50 8	7608.00 57059.99	380399.96 456479.96	14.09 105.67	704.44 845.33	3.59 337.71	2529.66 285474.96
7475.15-04	LL3-0.5M	9/6/2016	560	0.06% Achnanthidium sp.	Bacillariophyta	Bacillariophyceae	Cocconeidales	Achnanthidiaceae	Achnanthidium	sp.	1	1.00	1	1690.67	1690.67	3.02	3.02	62.83	189.69
7475.15-04	LL3-0.5M	9/6/2016	560 560	0.06% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	18	500.00	27.7777778	30432.00	845333.25	54.34	1509.52	0.88	1331.40
7475.15-04 7475.15-04	LL3-0.5M LL3-0.5M	9/6/2016 9/6/2016	560 560	0.06% Aulacoseira sp. 0.06% Botryococcus sp.	Bacillariophyta Chlorophyta	Coscinodiscophyceae Trebouxiophyceae	Aulacoseirales Trebouxiales	Aulacoseiraceae Botryococcaceae	Aulacoseira Botryococcus	sp. sp.	15	150.00 27.00	27	25360.00 1690.67	253599.98 45648.00	45.29 3.02	452.86 81.51	1077.57 75.74	487983.41 6173.73
7475.15-04	LL3-0.5M	9/6/2016	560	0.06% Chlamydomonas sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Chlamydomonadaceae	Chlamydomonas	sp.	15	15.00	1	25360.00	25360.00	45.29	45.29	143.79	6511.77
7475.15-04 7475.15-04	LL3-0.5M LL3-0.5M	9/6/2016 9/6/2016	560 560	0.06% Cocconeis sp. 0.06% Crucigeniella sp.	Bacillariophyta Chlorophyta	Bacillariophyceae Trebouxiophyceae	Cocconeidales Chlorellales	Cocconeidaceae Oocystaceae	Cocconeis Crucigeniella	sp.	11 70	11.00 280.00	1	18597.33 118346.66	18597.33 473386.62	33.21 211.33	33.21 845.33	2572.96 343.00	85446.90 289949.30
7475.15-04	LL3-0.5M	9/6/2016	560	0.06% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	sp.	17	17.00	1	28741.33	28741.33	51.32	51.32	3177.72	163092.73
7475.15-04	LL3-0.5M	9/6/2016	560	0.06% Cymbella sp.	Bacillariophyta	Bacillariophyceae	Cymbellales	Cymbellaceae	Cymbella	sp.	6	6.00	1	10144.00	10144.00	18.11	18.11	393.75	7132.50
7475.15-04 7475.15-04	LL3-0.5M LL3-0.5M	9/6/2016 9/6/2016	560 560	0.06% Dictyosphaerium spp. 0.06% Fragilaria spp.	Chlorophyta Bacillariophyta	Trebouxiophyceae Bacillariophyceae	Chlorellales Fragilariales	Chlorellaceae Fragilariaceae	Dictyosphaerium Fragilaria	spp. spp.	3	36.00 255.00	12 15	5072.00 28741.33	60863.99 431119.96	9.06 51.32	108.69 769.86	11.55 579.62	1254.99 446227.63
7475.15-04	LL3-0.5M	9/6/2016	560	0.06% Gomphonema sp.	Bacillariophyta	Bacillariophyceae	Cymbellales	Gomphonemataceae	Gomphonema	sp.	5	5.00	1	8453.33	8453.33	15.10	15.10	486.95	7350.58
7475.15-04 7475.15-04	LL3-0.5M LL3-0.5M	9/6/2016 9/6/2016	560 560	0.06% Melosira sp. 0.06% Microcystis sp.	Bacillariophyta Cyanobacteria	Coscinodiscophyceae Cyanophyceae	Melosirales Chroococcales	Melosiraceae Microcystaceae	Melosira Microcystis	sp.	3	6.00 400.00	2 400	5072.00 1690.67	10144.00 676266.60	9.06 3.02	18.11 1207.62	12048.79 161.35	218255.26 194844.24
7475.15-04	LL3-0.5M	9/6/2016	560	0.06% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Oocystis	sp.	14	56.00	400	23669.33	94677.32	42.27	169.07	1099.56	185898.42
7475.15-04	LL3-0.5M	9/6/2016	560	0.06% Pediastrum sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Pediastrum	sp.	3	96.00	32	5072.00	162303.98	9.06	289.83	144.00	41735.31
7475.15-04 7475.15-04	LL3-0.5M LL3-0.5M	9/6/2016 9/6/2016	560 560	0.06% Planktolyngbya spp. 0.06% Scenedesmus spp.	Cyanobacteria Chlorophyta	Cyanophyceae Chlorophyceae	Synechococcales Sphaeropleales	Leptolyngbyaceae Scenedesmaceae	Planktolyngbya Scenedesmus	spp. spp.	ь 91	120.00 910.00	20 10	10144.00 153850.65	202879.98 1538506.52	18.11 274.73	362.29 2747.33	6.28 1463.20	2276.24 4019889.50
7475.15-04	LL3-0.5M	9/6/2016	560	0.06% Synedra sp.	Bacillariophyta	Fragilariophyceae	Licmophorales	Ulnariaceae	Synedra	sp.	3	3.00	1	5072.00	5072.00	9.06	9.06	8256.11	74776.72
7475.15-05 7475.15-05	LL4-0.5M LL4-0.5M	9/6/2016 9/6/2016	480 480	0.04% Anabaena sp. 0.04% Aphanocapsa spp.	Cyanobacteria Cyanobacteria	Cyanophyceae Cyanophyceae	Nostocales Synechococcales	Nostocaceae Merismopediaceae	Anabaena Aphanocapsa	sp. spp.	9	63.00 6.00	7	20288.00 13525.33	142015.99 13525.33	42.27 28.18	295.87 28.18	523.60 0.91	154915.48 25.50
7475.15-05	LL4-0.5M	9/6/2016	480	0.04% Aulacoseira sp.	Bacillariophyta	Coscinodiscophyceae	Aulacoseirales	Aulacoseiraceae	Aulacoseira	spp. sp.	61	610.00	10	137507.54	1375075.42	286.47	2864.74	933.05	2672954.68
7475.15-05	LL4-0.5M	9/6/2016	480	0.04% Carteria sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Chlamydomonadaceae	Carteria	sp.	3	3.00	1	6762.67	6762.67	14.09	14.09	628.32	8852.32
7475.15-05 7475.15-05	LL4-0.5M LL4-0.5M	9/6/2016 9/6/2016	480 480	0.04% Ceratium sp. 0.04% Cocconeis sp.	Miozoa Bacillariophyta	Dinophyceae Bacillariophyceae	Gonyaulacales Cocconeidales	Ceratiaceae Cocconeidaceae	Ceratium Cocconeis	sp. sp.	6 1	6.00 1.00	1	13525.33 2254.22	13525.33 2254.22	28.18 4.70	28.18 4.70	392699.08 4099.78	11065386.38 19253.77
7475.15-05	LL4-0.5M	9/6/2016	480	0.04% Crucigeniella sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Crucigeniella	sp.	13	42.00	3.230769231	29304.89	94677.32	61.05	197.24	343.00	67654.84
7475.15-05 7475.15-05	LL4-0.5M LL4-0.5M	9/6/2016 9/6/2016	480	0.04% Cryptomonas spp. 0.04% Dictyosphaerium spp.	Cryptophyta	Cryptophyceae	Cryptomonadales Chlorellales	Cryptomonadaceae Chlorellaceae	Cryptomonas	spp.	1	1.00 32.00	1	2254.22 9016.89	2254.22 72135.10	4.70 18.79	4.70 150.28	2389.18	11220.30 1833.58
7475.15-05	LL4-0.5M	9/6/2016	480 480	0.04% Fragilaria spp.	Chlorophyta Bacillariophyta	Trebouxiophyceae Bacillariophyceae	Fragilariales	Fragilariaceae	Dictyosphaerium Fragilaria	spp. spp.	4 25	250.00	0 10	56355.55	563555.50	117.41	1174.07	12.20 1162.39	1364730.66
7475.15-05	LL4-0.5M	9/6/2016	480	0.04% Microcystis sp.	Cyanobacteria	Cyanophyceae	Chroococcales	Microcystaceae	Microcystis	sp.	87	580.00	6.666666667	196117.31	1307448.76	408.58	2723.85	84.76	230870.94
7475.15-05 7475.15-05	LL4-0.5M LL4-0.5M	9/6/2016 9/6/2016	480 480	0.04% Oocystis sp. 0.04% Pediastrum sp.	Chlorophyta Chlorophyta	Trebouxiophyceae Chlorophyceae	Chlorellales Sphaeropleales	Oocystaceae Hydrodictyaceae	Oocystis Pediastrum	sp. sp	6	24.00 128.00	4 42.66666667	13525.33 6762.67	54101.33 288540.42	28.18 14.09	112.71 601.13	1240.02 468.00	139763.57 281326.91
7475.15-05	LL4-0.5M	9/6/2016	480	0.04% Scenedesmus spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	spp.	77	924.00	12	173575.09	2082901.13	361.61	4339.38	1208.73	5245126.91
7475.15-05	LL4-0.5M	9/6/2016	480	0.04% Sphaerocystis sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	sp.	11	88.00	8	24796.44	198371.54	51.66	413.27	143.79	59425.91
7475.15-05 7475.15-06	LL4-0.5M LL5-0.5M	9/6/2016 9/6/2016	480 480	0.04% Staurastrum sp. 0.03% Anabaena sp.	Charophyta Cyanobacteria	Conjugatophyceae Cvanophyceae	Desmidiales Nostocales	Desmidiaceae Nostocaceae	Staurastrum Anabaena	sp. sp.	1	1.00 300.00	1 60	2254.22 14340.74	2254.22 860444.44	4.70 29.88	4.70 1792.59	10917.03 1022.65	51269.62 1833201.99
7475.15-06	LL5-0.5M	9/6/2016	480	0.03% Aulacoseira sp.	Bacillariophyta	Coscinodiscophyceae	Aulacoseirales	Aulacoseiraceae	Aulacoseira	sp.	3	45.00	15	8604.44	129066.67	17.93	268.89	2199.12	591317.59
7475.15-06 7475.15-06	LL5-0.5M LL5-0.5M	9/6/2016 9/6/2016	480 480	0.03% Botryococcus sp.	Chlorophyta Chlorophyta	Trebouxiophyceae	Trebouxiales Chlamydomonadales	Botryococcaceae Chlamydomonadaceae	Botryococcus Carteria	sp.	1	16.00 1.00	16 1	2868.15 2868.15	45890.37 2868 15	5.98 5.98	95.60 5.98	72.10 1734.55	6893.12 10364.45
7475.15-06 7475.15-06	LL5-0.5M LL5-0.5M	9/6/2016	480 480	0.03% Carteria sp. 0.03% Ceratium sp.	Chlorophyta Miozoa	Chlorophyceae Dinophyceae	Chlamydomonadales Gonyaulacales	Chiamydomonadaceae Ceratiaceae	Ceratium	sp. sp.	4	1.00 4.00	1	2868.15 11472.59	2868.15 11472.59	5.98 23.90	5.98 23.90	378021.56	9035182.00
7475.15-06	LL5-0.5M	9/6/2016	480	0.03% Cosmarium sp.	Charophyta	Conjugatophyceae	Desmidiales	Desmidiaceae	Cosmarium	sp.	1	1.00	1	2868.15	2868.15	5.98	5.98	6870.66	41054.33
7475.15-06 7475.15-06	LL5-0.5M LL5-0.5M	9/6/2016 9/6/2016	480 480	0.03% Cryptomonas spp. 0.03% Dictyosphaerium spp.	Cryptophyta Chlorophyta	Cryptophyceae Trebouxiophyceae	Cryptomonadales Chlorellales	Cryptomonadaceae Chlorellaceae	Cryptomonas Dictyosphaerium	spp. spp.	12 2	12.00 72.00	1 36	34417.78 5736.30	34417.78 206506.67	71.70 11.95	71.70 430.22	12762.72 16.62	915134.29 7149.00
7475.15-06	LL5-0.5M	9/6/2016	480	0.03% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	2	60.00	30	5736.30	172088.89	11.95	358.52	1218.94	437011.85
7475.15-06	LL5-0.5M	9/6/2016	480	0.03% Microcystis sp.	Cyanobacteria	Cyanophyceae	Chroococcales	Microcystaceae	Microcystis	sp.	260	660.00	2.538461538	745718.52	1892977.78	1553.58	3943.70	57.91	228364.11
7475.15-06 7475.15-06	LL5-0.5M LL5-0.5M	9/6/2016 9/6/2016	480 480	0.03% Oocystis sp. 0.03% Pediastrum sp.	Chlorophyta Chlorophyta	Trebouxiophyceae Chlorophyceae	Chlorellales Sphaeropleales	Oocystaceae Hydrodictyaceae	Oocystis Pediastrum	sp. sp.	3 1	12.00 64.00	4 64	8604.44 2868.15	34417.78 183561.48	17.93 5.98	71.70 382.42	1096.48 969.00	78621.46 370564.74
7475.15-06	LL5-0.5M	9/6/2016	480	0.03% Scenedesmus spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	spp.	23	368.00	16	65967.41	1055478.52	137.43	2198.91	930.63	2046363.95
7475.15-06 7475.15-06	LL5-0.5M LL5-0.5M	9/6/2016 9/6/2016	480 480	0.03% Sphaerocystis sp. 0.03% Staurastrum sp.	Chlorophyta Charophyta	Chlorophyceae	Chlamydomonadales Desmidiales	Sphaerocystidaceae Desmidiaceae	Sphaerocystis Staurastrum	sp.	4	32.00 1.00	8	11472.59 2868.15	91780.74 2868.15	23.90 5.98	191.21 5.98	127.83 6211.19	24442.74 37113.78
1410.10-00		3/0/2010	400	0.0570 Staulastium sp.	Charophyta	Conjugatophyceae	DESILIUIDIES		StaulaStrum	sp.	I	1.00	1	2000.10	2000.10	5.98	5.90	0211.19	3/113./8

Avista Phytoplankton 2016 (Batches 8&9) Taxa Report with Biovolumes

															Units per mL		
EcoAnalysts Sample ID	Site ID	Volume Recei Collection Date (mL)		rcent unted Taxon	Division	Class	Order	Family	Genus	Species	Number of Ce Natural Units	ells per Natural Unit Number of Ce	lls Units / Sample	Cells/ sample	(in sample Cells per mL (in received) sample received)	AVG_BV (µ³)	Biovolume (µ³/mL)
7475.17-01	LL0-0.5M	9/19/2016	560	0.12% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	38	1140.00	30 31788.64	953659.26	56.77 1702.96	,	1502.01
7475.17-01	LL0-0.5M	9/19/2016	560	0.12% Aulacoseira sp.	Bacillariophyta	Coscinodiscophyceae	Aulacoseirales	Aulacoseiraceae	Aulacoseira	sp.	1	5.00	5 836.54	4182.72	1.49 7.47	962.31	7187.62
7475.17-01 7475.17-01	LL0-0.5M LL0-0.5M	9/19/2016 9/19/2016	560 560	0.12% Crucigeniella sp. 0.12% Cryptomonas spp.	Chlorophyta Cryptophyta	Trebouxiophyceae Cryptophyceae	Chlorellales Cryptomonadales	Oocystaceae Cryptomonadaceae	Crucigeniella Cryptomonas	sp. spp.	19 13	76.00 13.00	4 15894.32 1 10875.06	63577.28 10875.06	28.38 113.53 19.42 19.42	161.88 2123.72	18378.26 41242.06
7475.17-01	LL0-0.5M	9/19/2016	560	0.12% Elakatothrix sp.	Charophyta	Klebsormidiophyceae	Klebsormidiales	Elakatotrichaceae	Elakatothrix	sp.	4	8.00	2 3346.17	6692.35	5.98 11.95		58868.94
7475.17-01	LL0-0.5M	9/19/2016	560	0.12% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Oocystis	sp.	49	74.00 1.5102040		61904.20	73.20 110.54	10264.63	1134685.15
7475.17-01 7475.17-01	LL0-0.5M LL0-0.5M	9/19/2016 9/19/2016	560 560	0.12% Pediastrum sp. 0.12% Scenedesmus spp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Sphaeropleales	Hydrodictyaceae Scenedesmaceae	Pediastrum Scenedesmus	sp. spp.	3 174	48.00 2088.00	162509.6312145558.52	40154.07 1746702.22	4.48 71.70 259.93 3119.11	585.00 812.43	41946.67 2534043.84
7475.17-01	LL0-0.5M	9/19/2016	560	0.12% Snowella sp.	Cyanobacteria	Cyanophyceae	Synechococcales	Coelosphaeriaceae	Snowella	sp.	1	60.00	60 836.54	50192.59	1.49 89.63	3.32	297.12
7475.17-01	LL0-0.5M	9/19/2016	560	0.12% Sphaerocystis sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	sp.	13	104.00	8 10875.06	87000.49	19.42 155.36	304.83	47357.79
7475.17-02 7475.17-02	LL1-0.5M LL1-0.5M	9/19/2016 9/19/2016	540 540	0.09% Aphanocapsa spp. 0.09% Asterionella sp.	Cyanobacteria Bacillariophyta	Cyanophyceae Fragilariophyceae	Synechococcales Tabellariales	Merismopediaceae Tabellariaceae	Aphanocapsa Asterionella	spp. sp	/1	4260.00 16.00	60 76364.44 16 1075.56	4581866.67 17208.89	141.42 8484.94 1.99 31.87	1.23 480.66	10453.44 15317.95
7475.17-02	LL1-0.5M	9/19/2016	540	0.09% Crucigeniella sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Crucigeniella	sp.	39	156.00	4 41946.67	167786.67	77.68 310.72	445.94	138561.96
7475.17-02	LL1-0.5M	9/19/2016	540	0.09% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	21	21.00	1 22586.67	22586.67	41.83 41.83	15381.24	643353.51
7475.17-02 7475.17-02	LL1-0.5M LL1-0.5M	9/19/2016 9/19/2016	540 540	0.09% Dictyosphaerium spp. 0.09% Oocystis sp.	Chlorophyta Chlorophyta	Trebouxiophyceae Trebouxiophyceae	Chlorellales Chlorellales	Chlorellaceae Oocystaceae	Dictyosphaerium Oocystis	spp. sp.	12 45	144.00 65.00 1.444444	12 12906.67 44 48400.00	154880.00 69911.11	23.90 286.81 89.63 129.47	15.64 9114.42	4485.21 1179997.93
7475.17-02	LL1-0.5M	9/19/2016	540	0.09% Scenedesmus spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	spp.	133	1596.00	12 143048.89	1716586.67	264.91 3178.86		2917822.23
7475.17-03	LL2-0.5M	9/19/2016	530	0.10% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	61	3500.00 57.377049		3500272.90	115.10 6604.29	0.86	5679.69
7475.17-03 7475.17-03	LL2-0.5M LL2-0.5M	9/19/2016 9/19/2016	530 530	0.10% Aulacoseira sp. 0.10% Crucigeniella sp.	Bacillariophyta Chlorophyta	Coscinodiscophyceae Trebouxiophyceae	Aulacoseirales Chlorellales	Aulacoseiraceae Oocystaceae	Aulacoseira Crucigeniella	sp. sp.	22 23	132.00 92.00	6 22001.72 4 23001.79	132010.29 92007.17	41.51 249.08 43.40 173.60	1357.17 327.08	338038.01 56781.10
7475.17-03	LL2-0.5M	9/19/2016	530	0.10% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	41	410.00	10 41003.20	410031.97	77.36 773.65	18498.67	14311410.02
7475.17-03	LL2-0.5M	9/19/2016	530	0.10% Dictyosphaerium spp.	Chlorophyta Bacillarianhyta	Trebouxiophyceae	Chlorellales	Chlorellaceae	Dictyosphaerium	spp.	4	48.00	12 4000.31	48003.74	7.55 90.57	29.55	2676.71
7475.17-03 7475.17-03	LL2-0.5M LL2-0.5M	9/19/2016 9/19/2016	530 530	0.10% Fragilaria spp. 0.10% Oocystis sp.	Bacillariophyta Chlorophyta	Bacillariophyceae Trebouxiophyceae	Fragilariales Chlorellales	Fragilariaceae Oocystaceae	Fragilaria Oocystis	spp. sp.	4 35	24.00 70.00	6 4000.31 2 35002.73	24001.87 70005.46	7.55 45.29 66.04 132.09	439.82 3063.05	19918.07 404585.71
7475.17-03	LL2-0.5M	9/19/2016	530	0.10% Scenedesmus spp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	spp.	103	1236.00	12 103008.03	1236096.37	194.35 2332.26	654.24	1525849.03
7475.17-03	LL2-0.5M	9/19/2016	530	0.10% Snowella sp.	Cyanobacteria	Cyanophyceae	Synechococcales	Coelosphaeriaceae	Snowella Sphaaraavatia	sp.	2	80.00	40 2000.16	80006.24	3.77 150.96	4.85	731.98
7475.17-03 7475.17-03	LL2-0.5M LL2-0.5M	9/19/2016 9/19/2016	530 530	0.10% Sphaerocystis sp. 0.10% Tetraëdriella sp.	Chlorophyta Ochrophyta	Chlorophyceae Xanthophyceae	Chlamydomonadales Mischococcales	Sphaerocystidaceae Pleurochloridaceae	Sphaerocystis Tetraëdriella	sp. sp.	15	120.00 1.00	8 15001.17 1 1000.08	120009.36 1000.08	28.30 226.43 1.89 1.89	57.91 3435.33	13111.81 6482.26
7475.17-04	LL3-0.5M	9/19/2016	520	0.21% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	12	720.00	60 5592.89	335573.33	10.76 645.33	1.10	708.58
7475.17-04	LL3-0.5M LL3-0.5M	9/19/2016 9/19/2016	520	0.21% Aulacoseira sp.	Bacillariophyta	Coscinodiscophyceae	Aulacoseirales	Aulacoseiraceae	Aulacoseira Ceratium	sp.	12	72.00 2.00	6 5592.89 1 932.15	33557.33 932.15	10.76 64.53 1.79 1.79	1859.82 804247.72	120020.58 1441688.50
7475.17-04 7475.17-04	LL3-0.5M	9/19/2016	520 520	0.21% Ceratium sp. 0.21% Cryptomonas spp.	Miozoa Cryptophyta	Dinophyceae Cryptophyceae	Gonyaulacales Cryptomonadales	Ceratiaceae Cryptomonadaceae	Cryptomonas	sp. spp.	2 7	7.00	1 3262.52	3262.52	6.27 6.27	1809.56	11353.29
7475.17-04	LL3-0.5M	9/19/2016	520	0.21% Cymbella sp.	Bacillariophyta	Bacillariophyceae	Cymbellales	Cymbellaceae	Cymbella	sp.	8	8.00	1 3728.59	3728.59	7.17 7.17	700.00	5019.26
7475.17-04	LL3-0.5M	9/19/2016 9/19/2016	520	0.21% Dictyosphaerium spp.	Chlorophyta Recilleriephyte	Trebouxiophyceae	Chlorellales	Chlorellaceae	Dictyosphaerium Fragilaria	spp.	4	15.00 3 54.00	75 1864.30	6991.11	3.59 13.44	26.14 1398.01	351.40
7475.17-04 7475.17-04	LL3-0.5M LL3-0.5M	9/19/2016	520 520	0.21% Fragilaria spp. 0.21% Gomphonema sp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Bacillariophyceae	Fragilariales Cymbellales	Fragilariaceae Gomphonemataceae	Fragilaria Gomphonema	spp. sp.	18	54.00 14.00	38389.3316525.04	25168.00 6525.04	16.13 48.40 12.55 12.55	358.14	67663.64 4494.02
7475.17-04	LL3-0.5M	9/19/2016	520	0.21% Microcystis sp.	Cyanobacteria	Cyanophyceae	Chroococcales	Microcystaceae	Microcystis	sp.	1	60.00	60 466.07	27964.44	0.90 53.78	164.64	8853.76
7475.17-04	LL3-0.5M LL3-0.5M	9/19/2016 9/19/2016	520	0.21% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Oocystis	sp.	32	42.00 1.31	25 14914.37 24 932.15	19575.11 22371.56	28.68 37.64 1.79 43.02	8746.19	329245.61 3872.00
7475.17-04 7475.17-04	LL3-0.5M	9/19/2016	520 520	0.21% Pediastrum sp. 0.21% Scenedesmus spp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Sphaeropleales	Hydrodictyaceae Scenedesmaceae	Pediastrum Scenedesmus	sp. spp.	192	48.00 2304.00	12 89486.22	1073834.67	172.09 43.02 2065.07	90.00 2042.04	4216938.41
7475.17-04	LL3-0.5M	9/19/2016	520	0.21% Sphaerocystis sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	sp.	3	24.00	8 1398.22	11185.78	2.69 21.51	96.97	2085.87
7475.17-04	LL3-0.5M	9/19/2016	520	0.21% Staurastrum sp. 0.21% Tetraëdriella sp.	Charophyta	Conjugatophyceae	Desmidiales Mischassesslag	Desmidiaceae	Staurastrum	sp.	3	3.00	1 1398.22	1398.22	2.69 2.69	7598.73	20432.13
7475.17-04 7475.17-04	LL3-0.5M LL3-0.5M	9/19/2016 9/19/2016	520 520	0.21% Tetraeditella sp. 0.21% Woronichinia sp.	Ochrophyta Cyanobacteria	Xanthophyceae Cyanophyceae	Mischococcales Synechococcales	Pleurochloridaceae Coelosphaeriaceae	Tetraëdriella Woronichinia	sp. sp.	1	1.00 80.00	1 466.07 80 466.07	466.07 37285.93	0.90 0.90 0.90 71.70	1570.80 7.54	1407.90 540.86
7475.17-05	LL4-0.5M	9/19/2016	520	0.12% Anabaena sp.	Cyanobacteria	Cyanophyceae	Nostocales	Nostocaceae	Anabaena	sp.	1	44.00	44 810.56	35664.80	1.56 68.59	310.34	21284.96
7475.17-05	LL4-0.5M	9/19/2016	520	0.12% Aphanocapsa spp.	Cyanobacteria	Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa	spp.	23	800.00 34.78260		648450.89	35.85 1247.02	0.70	869.17
7475.17-05 7475.17-05	LL4-0.5M LL4-0.5M	9/19/2016 9/19/2016	520 520	0.12% Asterionella sp. 0.12% Aulacoseira sp.	Bacillariophyta Bacillariophyta	Fragilariophyceae Coscinodiscophyceae	Tabellariales Aulacoseirales	Tabellariaceae Aulacoseiraceae	Asterionella Aulacoseira	sp. sp.	5 12	40.00 108.00	8 4052.82 9 9726.76	32422.54 87540.87	7.79 62.35 18.71 168.35	374.64 1590.43	23358.88 267745.60
7475.17-05	LL4-0.5M	9/19/2016	520	0.12% Ceratium sp.	Miozoa	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratium	sp.	16	16.00	1 12969.02	12969.02	24.94 24.94	447377.72	11157787.54
7475.17-05	LL4-0.5M	9/19/2016	520	0.12% Cocconeis sp.	Bacillariophyta	Bacillariophyceae	Cocconeidales	Cocconeidaceae	Cocconeis	sp.	1	1.00	1 810.56	810.56	1.56 1.56	565.49	881.47
7475.17-05 7475.17-05	LL4-0.5M LL4-0.5M	9/19/2016 9/19/2016	520 520	0.12% Cosmarium sp. 0.12% Crucigeniella sp.	Charophyta Chlorophyta	Conjugatophyceae Trebouxiophyceae	Desmidiales Chlorellales	Desmidiaceae Oocystaceae	Cosmarium Crucigeniella	sp. sp.	3	1.00 12.00	1 810.56 4 2431.69	810.56 9726.76	1.56 1.56 4.68 18.71	29466.57 512.00	45931.78 9577.12
7475.17-05	LL4-0.5M	9/19/2016	520	0.12% Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	3	3.00	1 2431.69	2431.69	4.68 4.68	5750.16	26889.65
7475.17-05	LL4-0.5M	9/19/2016	520	0.12% Cymbella sp.	Bacillariophyta	Bacillariophyceae	Cymbellales	Cymbellaceae	Cymbella	sp.	1	1.00	1 810.56	810.56	1.56 1.56	700.00	1091.14
7475.17-05 7475.17-05	LL4-0.5M LL4-0.5M	9/19/2016 9/19/2016	520 520	0.12% Fragilaria spp. 0.12% Microcystis sp.	Bacillariophyta Cyanobacteria	Bacillariophyceae Cyanophyceae	Fragilariales Chroococcales	Fragilariaceae Microcystaceae	Fragilaria Microcystis	spp. sp.	120 5		30102131.01004052.82	3063930.43 810563.61	196.41 5892.17 7.79 1558.78	634.60 337.71	3739185.35 526409.62
7475.17-05	LL4-0.5M	9/19/2016	520	0.12% Navicula spp.	Bacillariophyta	Bacillariophyceae	Naviculales	Naviculaceae	Navicula	spp.	1	1.00	1 810.56	810.56	1.56 1.56	42609.42	66418.55
7475.17-05	LL4-0.5M LL4-0.5M	9/19/2016 9/19/2016	520 520	0.12% Oocystis sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Oocystis	sp.	10	20.00 10.00	2 8105.64 10 810.56	16211.27 8105.64	15.59 31.18 1.56 15.59	9817.48	306064.98 3741.06
7475.17-05 7475.17-05	LL4-0.5M	9/19/2016	520 520	0.12% Pediastrum sp. 0.12% Scenedesmus spp.	Chlorophyta Chlorophyta	Chlorophyceae Chlorophyceae	Sphaeropleales Sphaeropleales	Hydrodictyaceae Scenedesmaceae	Pediastrum Scenedesmus	sp. spp.	80	960.00	12 64845.09	778141.06	124.70 1496.43	240.00 2233.28	3341936.29
7475.17-05	LL4-0.5M	9/19/2016	520	0.12% Sphaerocystis sp.	Chlorophyta	Chlorophyceae	Chlamydomonadales	Sphaerocystidaceae	Sphaerocystis	sp.	17	136.00	8 13779.58	110236.65	26.50 211.99	344.79	73093.47
7475.17-05	LL4-0.5M LL5-0.5M	9/19/2016 9/19/2016	520	0.12% Staurastrum sp.	Charophyta Recilleries bute	Conjugatophyceae	Desmidiales Mastaglaialea	Desmidiaceae	Staurastrum	sp.	1	1.00	1 810.56	810.56	1.56 1.56	2869.85 294.52	4473.45
7475.17-06 7475.17-06	LL5-0.5M	9/19/2016	550 550	0.23% Achnanthes spp. 0.23% Amphora sp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Bacillariophyceae	Mastogloiales Thalassiophysales	Achnanthaceae Catenulaceae	Achnanthes Amphora	spp. sp.	9 5	9.00 5.00	1 3857.97 1 2143.32	3857.97 2143.32	7.01 7.01 3.90 3.90		2065.94 26140.68
7475.17-06	LL5-0.5M	9/19/2016	550	0.23% Cocconeis sp.	Bacillariophyta	Bacillariophyceae	Cocconeidales	Cocconeidaceae	Cocconeis	sp.	61	61.00	1 26148.47	26148.47	47.54 47.54	2023.19	96187.67
7475.17-06	LL5-0.5M	9/19/2016	550 550	0.23% Cosmarium sp.	Charophyta Bacillariophyta	Conjugatophyceae Bacillariophyceae	Desmidiales	Desmidiaceae	Cosmarium	sp.	3	3.00	1 1285.99 1 24433 82	1285.99 24433 82	2.34 2.34	24429.02	57119.07
7475.17-06 7475.17-06	LL5-0.5M LL5-0.5M	9/19/2016 9/19/2016	550 550	0.23% Cymbella sp. 0.23% Diatoma spp.	Bacillariophyta Bacillariophyta	Bacillariophyceae Fragilariophyceae	Cymbellales Tabellariales	Cymbellaceae Tabellariaceae	Cymbella Diatoma	sp. sp.	57	57.00 2.00	1 24433.82 1 857.33	24433.82 857.33	44.43 44.43 1.56 1.56	682.50 113.10	30320.14 176.29
7475.17-06	LL5-0.5M	9/19/2016	550	0.23% Fragilaria spp.	Bacillariophyta	Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	95	95.00	1 40723.03	40723.03	74.04 74.04	389.56	28843.53
7475.17-06	LL5-0.5M	9/19/2016	550	0.23% Gomphonema spp.	Bacillariophyta	Bacillariophyceae	Cymbellales Molosirales	Gomphonemataceae	Gomphonema Molociro	spp.	51	51.00	1 21861.84	21861.84	39.75 39.75	1130.97	44954.81
7475.17-06 7475.17-06	LL5-0.5M LL5-0.5M	9/19/2016 9/19/2016	550 550	0.23% Melosira sp. 0.23% Monoraphidium sp.	Bacillariophyta Chlorophyta	Coscinodiscophyceae Chlorophyceae	Melosirales Sphaeropleales	Melosiraceae Selenastraceae	Melosira Monoraphidium	sp. sp.	6 2	6.00 2.00	1 2571.98 1 857.33	2571.98 857.33	4.68 4.68 1.56 1.56	2261.95 28.27	10577.61 44.07
7475.17-06	LL5-0.5M	9/19/2016	550	0.23% Navicula spp.	Bacillariophyta	Bacillariophyceae	Naviculales	Naviculaceae	Navicula	spp.	- 8	8.00	1 3429.31	3429.31	6.24 6.24	954.26	5949.90
7475.17-06	LL5-0.5M	9/19/2016	550	0.23% Pediastrum sp.	Chlorophyta Recilleriephyte	Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Pediastrum Bippularia	sp.	3		24 1285.99	30863.77	2.34 56.12		67170.78
7475.17-06 7475.17-06	LL5-0.5M LL5-0.5M	9/19/2016 9/19/2016	550 550	0.23% Pinnularia sp. 0.23% Scenedesmus spp.	Bacillariophyta Chlorophyta	Bacillariophyceae Chlorophyceae	Naviculales Sphaeropleales	Pinnulariaceae Scenedesmaceae	Pinnularia Scenedesmus	sp. spp.	4 7	4.00 28.00	1 1714.65 4 3000.64	1714.65 12002.58	3.12 3.12 5.46 21.82	4288.27 130.70	13368.92 2852.20
7475.17-06	LL5-0.5M	9/19/2016	550	0.23% Sorastrum sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Sorastrum	sp.	1	12.00	12 428.66	5143.96	0.78 9.35	73.50	687.42
7475.17-06	LL5-0.5M LL5-0.5M	9/19/2016 9/19/2016	550 550	0.23% Synedra sp.	Bacillariophyta	Fragilariophyceae	Licmophorales Sphaeropleales	Ulnariaceae Hydrodictyaceae	Synedra Tetraëdron	sp.	8	8.00 2.00	1 3429.31 1 857.33	3429.31 857.33	6.24 6.24 1.56 1.56	14646.11 108.00	91320.00 168.35
7475.17-06	LC3-0.3IVI	<i>JI IJIZ</i> U IO	550	0.23% Tetraëdron sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Hydrodictyaceae	reliaeululi	sp.	Z	2.00	1 007.03	007.33	1.00 1.00	106.00	CC.001

		Volume		Percent														Cells per mL		
EcoAnalysts Sample ID	Site ID	Received Collection Date (mL)		Counte d	Taxon	Division	Class	Order	Family	Genus	Specie s	Number of Natural Units	Number of Cells	Cells per Natural Unit	Units / Sample	Cells/ sample	(in sample received)	(in sample received)	AVG_BV (µ³)	Biovolume (µ³/mL)
7475.19-01 7475.19-01	LL0-0.5M LL0-0.5M	10/12/2016 10/12/2016	550 550		Aphanocapsa spp.Asterionella sp.	•	a Cyanophyceae a Fragilariophyceae	Synechococcales Tabellariales	Merismopediaceae Tabellariaceae	Aphanocapsa Asterionella	a spp. sp.	11 9	11.00 9.00	1 1	3389.12 2772.92	3389.12 2772.92	6.16 5.04	6.16 5.04	0.91 452.39	5.58 2280.80
7475.19-01	LL0-0.5M	10/12/2016	550	0.32%	6 Crucigeniella sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Crucigeniella	sp.	60 25	240.00	4	18486.12	73944.46	33.61	134.44	216.00	29040.01
7475.19-01 7475.19-01	LL0-0.5M LL0-0.5M	10/12/2016 10/12/2016	550 550		6 Cryptomonas spp.6 Dinobryon spp.	Cryptophyta Ochrophyta	Cryptophyceae Chrysophyceae	Cryptomonadales Chromulinales	Cryptomonadaceae Dinobryaceae	Cryptomonas Dinobryon	spp. spp.	25 11	25.00 11.00	1	7702.55 3389.12	7702.55 3389.12	14.00 6.16	14.00 6.16	942.48 1072.33	13199.06 6607.74
7475.19-01	LL0-0.5M	10/12/2016	550		6 Fragilaria spp.		a Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	20	480.00	24	6162.04 2772.92	147888.93	11.20	268.89 20.17	703.72	189221.73
7475.19-01 7475.19-01	LL0-0.5M LL0-0.5M	10/12/2016 10/12/2016	550 550		6 Oocystis sp.6 Rhodomonas sp.	Chlorophyta Cryptophyta	Trebouxiophyceae Cryptophyceae	Chlorellales Pyrenomonadales	Oocystaceae Pyrenomonadaceae	Oocystis Rhodomonas	sp. sp.	9 11	36.00 11.00	4	3389.12	11091.67 3389.12	5.04 6.16	20.17 6.16	469.15 1642.01	9461.09 10118.10
7475.19-01	LL0-0.5M	10/12/2016	550		6 Scenedesmus sp.		Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	•	113	1808.00	16	34815.52	557048.29	63.30	1012.82	538.78	545687.54
7475.19-01 7475.19-02	LL0-0.5M LL1-0.5M	10/12/2016 10/12/2016	550 520		6 Sphaerocystis sp.6 Aphanocapsa spp.		Chlorophyceae a Cyanophyceae	Chlamydomonadales Synechococcales	Sphaerocystidaceae Merismopediaceae	 Sphaerocystis Aphanocapsa 	•	39 8	312.00 240.00	8 30	12015.98 699.11	96127.80 20973.33	21.85 1.34	174.78 40.33	268.08 1.29	46854.96 51.95
7475.19-02	LL1-0.5M	10/12/2016	520		6 Asterionella sp.		a Fragilariophyceae	Tabellariales	Tabellariaceae	Asterionella	sp.	25	200.00	8	2184.72	17477.77	4.20	33.61	763.41	25658.95
7475.19-02 7475.19-02	LL1-0.5M LL1-0.5M	10/12/2016 10/12/2016	520 520		6 Aulacoseira sp.6 Crucigeniella sp.		a Coscinodiscophyceae Trebouxiophyceae	e Aulacoseirales Chlorellales	Aulacoseiraceae Oocystaceae	Aulacoseira Crucigeniella	sp. sp.	2 21	25.00 84.00	12.5 4	174.78 1835.17	2184.72 7340.67	0.34 3.53	4.20 14.12	508.94 531.44	2138.25 7502.17
7475.19-02	LL1-0.5M	10/12/2016	520	1.14%	6 Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas	spp.	28	28.00	1	2446.89	2446.89	4.71	4.71	6492.63	30551.40
7475.19-02 7475.19-02	LL1-0.5M LL1-0.5M	10/12/2016 10/12/2016	520 520		6 Diatoma spp.6 Dinobryon spp.		a Fragilariophyceae Chrysophyceae	Tabellariales Chromulinales	Tabellariaceae Dinobryaceae	Diatoma Dinobryon	sp. spp.	1 19	1.00 9.00	1 0.47368421	87.39 1660.39	87.39 786.50	0.17 3.19	0.17 1.51	763.41 971.80	128.29 1469.85
7475.19-02	LL1-0.5M	10/12/2016	520	1.14%	6 Fragilaria spp.	Bacillariophyta	a Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	spp.	15	150.00	10	1310.83	13108.33	2.52	25.21	879.65	22174.41
7475.19-02 7475.19-02	LL1-0.5M LL1-0.5M	10/12/2016 10/12/2016	520 520		6 Hannaea sp.6 Oocystis sp.		a Fragilariophyceae Trebouxiophyceae	Licmophorales Chlorellales	Ulnariaceae Oocystaceae	Hannaea Oocystis	sp. sp.	16 5	16.00 20.00	1	1398.22 436.94	1398.22 1747.78	2.69 0.84	2.69 3.36	829.38 2052.51	2230.11 6898.70
7475.19-02	LL1-0.5M	10/12/2016	520	1.14%	6 Pediastrum sp.		Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Pediastrum	sp.	5	120.00	24	436.94	10486.66	0.84	20.17	168.00	3388.00
7475.19-02	LL1-0.5M	10/12/2016	520		6 Scenedesmus sp.		Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus	•	153	1836.00	12	13370.50	160445.97	25.71	308.55	248.71	76739.15
7475.19-02 7475.19-03	LL1-0.5M LL2-0.5M	10/12/2016 10/12/2016	520 500		6 Sphaerocystis sp.6 Anabaena sp.		Chlorophyceae a Cyanophyceae	Chlamydomonadales Nostocales	 Sphaerocystidaceae Nostocaceae 	 Sphaerocystis Anabaena 	s sp. sp.	6 1	48.00 17.00	8 17	524.33 97.42	4194.67 1656.20	1.01 0.19	8.07 3.31	220.89 523.60	1781.87 1734.37
7475.19-03	LL2-0.5M	10/12/2016	500	1.03%	6 Aphanocapsa spp.	Cyanobacteria	a Cyanophyceae	Synechococcales	Merismopediaceae	Aphanocapsa		9	360.00	40	876.81	35072.46	1.75	70.14	1.51	105.85
7475.19-03 7475.19-03	LL2-0.5M LL2-0.5M	10/12/2016 10/12/2016	500 500		6 Asterionella sp.6 Aulacoseira sp.		a Fragilariophyceae a Coscinodiscophyceae	Tabellariales Aulacoseirales	Tabellariaceae Aulacoseiraceae	Asterionella Aulacoseira	sp. sp.	29 7	116.00 42.00	4	2825.28 681.96	11301.13 4091.79	5.65 1.36	22.60 8.18	718.64 1095.04	16242.86 8961.35
7475.19-03	LL2-0.5M	10/12/2016	500		6 Ceratium sp.	Miozoa	Dinophyceae	Gonyaulacales	Ceratiaceae	Ceratium	sp.	4	4.00	1	389.69	389.69	0.78	0.78	812985.27	633631.03
7475.19-03 7475.19-03	LL2-0.5M LL2-0.5M	10/12/2016 10/12/2016	500		6 Crucigeniella sp.	Chlorophyta	Trebouxiophyceae	Chlorellales	Oocystaceae	Crucigeniella	•	7 39	28.00 39.00	4	681.96 3799.52	2727.86 3799.52	1.36 7.60	5.46 7.60	480.05 17344.21	2619.01 131799.23
7475.19-03	LL2-0.5M	10/12/2016	500 500		6 Cryptomonas spp.6 Fragilaria spp.	Cryptophyta Bacillariophyta	Cryptophyceae a Bacillariophyceae	Cryptomonadales Fragilariales	Cryptomonadaceae Fragilariaceae	Cryptomonas Fragilaria	spp. spp.			32.9113924	7696.46	253301.13	15.39	506.60	565.49	286476.99
7475.19-03	LL2-0.5M	10/12/2016	500	1.03%	6 Gomphonema spp	. Bacillariophyta	a Bacillariophyceae	Cymbellales	Gomphonemataceae	e Gomphonema	a spp.	5	5.00	1	487.12	487.12	0.97	0.97	18378.32	17904.80
7475.19-03 7475.19-03	LL2-0.5M LL2-0.5M	10/12/2016 10/12/2016	500 500		6 Hannaea sp. 6 Microcystis sp.		a Fragilariophyceae a Cyanophyceae	Licmophorales Chroococcales	Ulnariaceae Microcystaceae	Hannaea Microcystis	sp. sp.	3	3.00 400.00	1 200	292.27 194.85	292.27 38969.40	0.58 0.39	0.58 77.94	4241.15 321.56	2479.13 25061.61
7475.19-03	LL2-0.5M	10/12/2016	500	1.03%	6 Pediastrum sp.	Chlorophyta	Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Pediastrum	sp.	1	24.00	24	97.42	2338.16	0.19	4.68	360.00	1683.48
7475.19-03 7475.19-03	LL2-0.5M LL2-0.5M	10/12/2016 10/12/2016	500 500		6 Scenedesmus sp.6 Sphaerocystis sp.		Chlorophyceae Chlorophyceae	Sphaeropleales Chlamvdomonadales	Scenedesmaceae Sphaerocystidaceae	Scenedesmus Sphaerocystis	•	109	1308.00 148.00	12 9.25	10619.16 1558.78	127429.95 14418.68	21.24 3.12	254.86 28.84	837.76 161.03	213510.92 4643.71
7475.19-04	LL2-0.5M	10/13/2016	515		6 Asterionella sp.		a Fragilariophyceae	Tabellariales	Tabellariaceae	Asterionella	s sp. sp.	7	42.00	6	1429.16	8574.97	2.78	16.65	1472.62	24519.79
7475.19-04	LL3-0.5M	10/13/2016	515		6 Aulacoseira sp.		a Coscinodiscophyceae	Aulacoseirales	Aulacoseiraceae	Aulacoseira	sp.	3	28.00	9.33333333	612.50	5716.65	1.19	11.10	735.13	8160.19
7475.19-04 7475.19-04	LL3-0.5M LL3-0.5M	10/13/2016 10/13/2016	515 515		6 Ceratium sp.6 Crucigeniella sp.	Miozoa Chlorophyta	Dinophyceae Trebouxiophyceae	Gonyaulacales Chlorellales	Ceratiaceae Oocystaceae	Ceratium Crucigeniella	sp. sp.	10	1.00 40.00	4	204.17 2041.66	204.17 8166.64	0.40 3.96	0.40 15.86	704030.91 551.37	279105.20 8743.35
7475.19-04	LL3-0.5M	10/13/2016	515	0.49%	6 Cryptomonas spp.	Cryptophyta	Cryptophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas		79	79.00	1	16129.11	16129.11	31.32	31.32	3180.86	99620.39
7475.19-04 7475.19-04	LL3-0.5M LL3-0.5M	10/13/2016 10/13/2016	515 515		6 Dinobryon sp. 6 Fragilaria spp.		Chrysophyceae a Bacillariophyceae	Chromulinales Fragilariales	Dinobryaceae Fragilariaceae	Dinobryon Fragilaria	sp. spp.	1 40	1.00 1000.00	1 25	204.17 8166.64	204.17 204166.01	0.40 15.86	0.40 396.44	3769.91 1786.78	1494.54 708349.40
7475.19-04	LL3-0.5M	10/13/2016			6 Hannaea sp.		a Fragilariophyceae	Licmophorales	Ulnariaceae	Hannaea	sp.	39	39.00	1	7962.47	7962.47	15.46	15.46	2199.12	34000.77
7475.19-04 7475.19-04	LL3-0.5M LL3-0.5M	10/13/2016 10/13/2016	515 515		6 Microcystis sp. 6 Oocystis sp.		a Cyanophyceae Trebouxiophyceae	Chroococcales Chlorellales	Microcystaceae Oocystaceae	Microcystis Oocystis	sp.	1	180.00 20.00	180	204.17 2041.66	36749.88 4083.32	0.40 3.96	71.36 7.93	113.10 1432.57	8070.49 11358.50
7475.19-04	LL3-0.5M	10/13/2016	515		6 Pediastrum sp.		Chlorophyceae	Sphaeropleales	Hydrodictyaceae	Pediastrum	sp. sp.	3	72.00	24	612.50	14699.95	1.19	28.54	1386.00	39561.43
7475.19-04	LL3-0.5M	10/13/2016	515		6 Scenedesmus spp		Chlorophyceae	Sphaeropleales	Scenedesmaceae	Scenedesmus		103	1236.00	12	21029.10	252349.18	40.83	490.00	1156.11	566490.11
7475.19-04 7475.19-05	LL3-0.5M LL4-0.5M	10/13/2016 10/13/2016	515 500		6 Sphaerocystis sp.6 Achnanthidium sp.		Chlorophyceae a Bacillariophyceae	Chlamydomonadales Cocconeidales	Sphaerocystidaceae Achnanthidiaceae	 Sphaerocystis Achnanthidiur 	•	5 23	40.00 23.00	8	1020.83 5726.34	8166.64 5726.34	1.98 11.45	15.86 11.45	172.01 603.19	2727.61 6908.09
7475.19-05	LL4-0.5M	10/13/2016	500	0.40%	6 Amphora sp.	Bacillariophyta	a Bacillariophyceae	Thalassiophysales	Catenulaceae	Amphora	sp.	45	45.00	1	11203.70	11203.70	22.41	22.41	5544.00	124226.67
7475.19-05 7475.19-05	LL4-0.5M LL4-0.5M	10/13/2016 10/13/2016	500 500		6 Asterionella sp.6 Aulacoseira sp.		a Fragilariophyceae a Coscinodiscophyceae	Tabellariales Aulacoseirales	Tabellariaceae Aulacoseiraceae	Asterionella Aulacoseira	sp. sp	7	28.00 1.00	4	1742.80 248.97	6971.19 248.97	3.49 0.50	13.94 0.50	388.77 549.78	5420.41 273.76
7475.19-05	LL4-0.5M	10/13/2016	500		6 Cocconeis sp.		a Bacillariophyceae	Cocconeidales	Cocconeidaceae	Cocconeis	sp.	33	33.00	1	8216.05	8216.05	16.43	16.43	1451.42	23849.81
7475.19-05 7475.19-05	LL4-0.5M LL4-0.5M	10/13/2016 10/13/2016	500		6 Cryptomonas spp.	•••••	Cryptophyceae Bacillariophyceae	Cryptomonadales	Cryptomonadaceae	Cryptomonas		2	2.00 11.00	1	497.94 2738.68	497.94 2738.68	1.00 5.48	1.00 5.48	1393.82 168.00	1388.08 920.20
7475.19-05	LL4-0.5M LL4-0.5M	10/13/2016	500 500		6 Cymbella sp. 6 Fragilaria spp.		a Bacillariophyceae a Bacillariophyceae	Cymbellales Fragilariales	Cymbellaceae Fragilariaceae	Cymbella Fragilaria	sp. spp.	96	96.00	1	2738.68 23901.23	2738.68 23901.23	5.48 47.80	5.48 47.80	779.12	920.20 37243.62
7475.19-05	LL4-0.5M	10/13/2016	500	0.40%	6 Gomphonema spp	. Bacillariophyta	a Bacillariophyceae	Cymbellales	Gomphonematacea	e Gomphonema	a spp.	55	55.00	1	13693.42	13693.42	27.39	27.39	981.75	26886.97
7475.19-05 7475.19-05	LL4-0.5M LL4-0.5M	10/13/2016 10/13/2016	500 500		6 Hannaea sp. 6 Navicula spp.		a Fragilariophyceae a Bacillariophyceae	Licmophorales Naviculales	Ulnariaceae Naviculaceae	Hannaea Navicula	sp. spp.	15 7	15.00 7.00	1	3734.57 1742.80	3734.57 1742.80	7.47 3.49	7.47 3.49	1781.28 3694.51	13304.64 12877.58
7475.19-05	LL4-0.5M	10/13/2016	500	0.40%	6 Nitzschia spp.	Bacillariophyta	a Bacillariophyceae	Bacillariales	Bacillariaceae	Nitzschia	spp.	2	2.00	1	497.94	497.94	1.00	1.00	8620.53	8585.05
7475.19-05 7475.19-05	LL4-0.5M LL4-0.5M	10/13/2016 10/13/2016	500 500		6 Pediastrum sp.6 Scenedesmus spp		Chlorophyceae Chlorophyceae	Sphaeropleales Sphaeropleales	Hydrodictyaceae Scenedesmaceae	Pediastrum Scenedesmus	sp.	1	12.00 16.00	12 4	248.97 995.88	2987.65 3983.54	0.50 1.99	5.98 7.97	60.00 42.41	358.52 337.90
7475.19-05	LL4-0.5M	10/13/2016	500		6 Synedra sp.		a Fragilariophyceae	Licmophorales	Ulnariaceae	Synedra	sp.	3	3.00	1	746.91	746.91	1.49	1.49	3711.01	5543.60
7475.19-06	LL5-0.5M	10/13/2016	515 515		6 Achnanthidium sp.		a Bacillariophyceae	Cocconeidales	Achnanthidiaceae	Achnanthidiur	•	17	17.00	1	3222.91	3222.91	6.26	6.26	373.85	2339.58
7475.19-06 7475.19-06	LL5-0.5M LL5-0.5M	10/13/2016 10/13/2016	515 515		6 Amphora sp.6 Asterionella sp.		a Bacillariophyceae a Fragilariophyceae	Thalassiophysales Tabellariales	Catenulaceae Tabellariaceae	Amphora Asterionella	sp. sp.	31	31.00 24.00	8	5877.06 568.75	5877.06 4549.99	11.41 1.10	11.41 8.83	780.00 360.50	8901.18 3184.97
7475.19-06	LL5-0.5M	10/13/2016	515		6 Aulacoseira sp.	Bacillariophyta	a Coscinodiscophyceae	e Aulacoseirales	Aulacoseiraceae	Aulacoseira	sp.	2	2.00	1	379	379	1	1	150.80	111.02
7475.19-06 7475.19-06	LL5-0.5M LL5-0.5M				6 Cocconeis sp. 6 Cosmarium spp.		a Bacillariophyceae Conjugatophyceae	Cocconeidales Desmidiales	Cocconeidaceae Desmidiaceae	Cocconeis Cosmarium	sp. spp.	45 2	45.00 2.00	1 1	8531 379	8531 379	17 1	17 1	1470.27 829.38	24355.65 610.63
7475.19-06	LL5-0.5M	10/13/2016	515	0.53%	6 Cyclotella spp.	Bacillariophyta	a Mediophyceae	Stephanodiscales	Stephanodiscaceae	Cyclotella	spp.	5	5.00	1	948	948	2	2	254.47	468.38
7475.19-06 7475.19-06	LL5-0.5M LL5-0.5M				6 Cymbella sp. 6 Diatoma spp.		a Bacillariophyceae a Fragilariophyceae	Cymbellales Tabellariales	Cymbellaceae Tabellariaceae	Cymbella Diatoma	sp.	22	22.00 2.00	1 1	4171 379	4171 379	8 1	8 1	157.50 176.72	1275.54 130.11
7475.19-06	LL5-0.5M				6 Fragilaria spp.		a Bacillariophyceae	Fragilariales	Fragilariaceae	Fragilaria	sp. spp.	2 90	120.00	ı 1.333333333	17062	22750	33	44	439.82	19429.01
7475.19-06	LL5-0.5M	10/13/2016	515	0.53%	6 Gomphonema spp		a Bacillariophyceae	Cymbellales	•	e Gomphonema	a spp.	46	46.00	1	8721	8721	17	17	1526.81	25854.46
7475.19-06 7475.19-06	LL5-0.5M LL5-0.5M				6 Hannaea sp. 6 Melosira sp.		a Fragilariophyceae a Coscinodiscophyceae	Licmophorales Melosirales	Ulnariaceae Melosiraceae	Hannaea Melosira	sp. sp.	37 1	37.00 1.00	1 1	7015 190	7015 190	14 0	14 0	2657.79 4002.39	36200.40 1473.37
7475.19-06	LL5-0.5M	10/13/2016	515	0.53%	6 Navicula spp.	Bacillariophyta	a Bacillariophyceae	Naviculales	Naviculaceae	Navicula	spp.	2	2.00	1	379	379	1	1	1166.32	858.69
7475.19-06 7475.19-06	LL5-0.5M LL5-0.5M				6 Nitzschia spp.6 Scenedesmus spp		a Bacillariophyceae Chlorophyceae	Bacillariales Sphaeropleales	Bacillariaceae Scenedesmaceae	Nitzschia Scenedesmus	spp. s spp.	1 8	1.00 32.00	1 4	190 1517	190 6067	0	0 12	28509.95 29.45	10495.13 346.94
	0.0ivi		510	5.007		- eoropriytu	2	5F	200.100001100000	200104001104	44.	0	02.00	т	1017	0007	0	12	_0.10	0.01

APPENDIX IV – Lake Spokane Zooplankton Data

(See Excel Spreadsheet of Laboratory Data)

(This Page Intentionally Left Blank)

APPENDIX B

Agency Consultation

January 31, 2017

Patrick McGuire, Water Quality Program Washington Department of Ecology Eastern Regional Office 4601 N Monroe Street Spokane, WA 99205-1295

Subject: Lake Spokane Dissolved Oxygen Water Quality Attainment Plan, Five Year Report

Dear Pat:

I have enclosed the Lake Spokane Dissolved Oxygen Water Quality Attainment Plan Five Year Report (Five Year Report) for your review and approval. The Five Year Report was completed in accordance with the Lake Spokane Dissolved Oxygen Water Quality Attainment Plan (DO WQAP), required by the Spokane River Hydroelectric Project License (License) Appendix B, Section 5.6.C of the Washington Department of Ecology (Ecology) Section 401 Water Quality Certification.

The Five Year Report assesses the progress made towards improving Lake Spokane's water quality through the implementation of the selected reasonable and feasible measures and includes monitoring results which address year to year variability and trend analyses. In addition, the Five Year Report also includes the 2016 baseline monitoring, implementation activities, effectiveness of the implementation activities, and proposed actions for 2017.

In accordance with the DO WQAP, following completion of the 2016 nutrient monitoring season, Avista and Ecology evaluated the results and success of monitoring baseline nutrient conditions in Lake Spokane. As discussed in the Five Year Report, in order to gain a better understanding of core summer salmonid habitat in Lake Spokane, Avista proposes to modify the 2017 and 2018 sampling program. This would include a multi-year fish population and habitat assessment in Lake Spokane to gain an understanding of the status of the rainbow trout population in the lake and determine habitat utilization.

As you're aware, Avista has been working with the Washington Department of Fish and Wildlife (WDFW) to implement a carp removal effort in Lake Spokane this winter (February) as well as during spring spawning (May/June), when carp are congregated and in shallow areas. Avista will continue to keep Ecology updated as we implement this project.

Mr. Pat McGuire January 31, 2017 Page 2

We would appreciate your review of the Annual Report by March 6, 2017. This will allow us time to incorporate your comments and recommendations, if you have any, and submit it to the Federal Energy Regulatory Commission by April 1, 2017.

Please feel free to call me at (509) 495-4643 if you have any questions about the Five Year Report.

Sincerely,

an Meghan Lunney

Aquatic Resource Specialist

Enclosure (1)

cc: Dave Knight, Ecology Jim Ross, Ecology Karin Baldwin, Ecology Chad Brown, Ecology Speed Fitzhugh, Avista Chris Moan, Avista

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

4601 N Monroe Street • Spokane, Washington 99205-1295 • (509)329-3400

March 6, 2017

Ms. Meghan Lunney Aquatic Resource Specialist Avista Corporation 1411 East Mission Avenue, MSC-1 Spokane, WA 99220-3727

RE: Request for Ecology Review and Comments –*Lake Spokane Dissolved Oxygen Water Quality Attainment Plan, Five Year Report.* Spokane River Hydroelectric Project, No. P-2545

Dear Ms. Lunney:

The Department of Ecology (Ecology) has reviewed the *Lake Spokane Dissolved Oxygen Water Quality Attainment Plan, Five Year Report* sent to Ecology on January 31, 2017. The Annual Summary Report is a requirement of Section 5.6.C, Appendix B of the 401 Certification.

Ecology offers the following comments:

- 1. The units are missing on page 7, Section 2.2, second bullet, in the sentence "Summer "June to September) hypolimnetic...a mean of 24.8±16%.".
- 2. In section 2.3, page 8, in the second paragraph it would be helpful to give an explanation for why Avista plans to exclude the free flowing areas from assessments.
- 3. On page 9, second paragraph, the Report mentions that Avista would suspend the nutrient, chlorophyll, phytoplankton and zooplankton components of the baseline monitoring program. Ecology is concerned about suspending the nutrient data collection for the following reasons:
 - a. The USGS will be monitoring the groundwater for nutrients in 2017 and 2018, Ecology feels it would be beneficial to have the nutrient data from the lake area for comparison and to see if there is any connection.
 - b. Liberty Lake wastewater treatment plant tertiary treatment should be operating this fall. Nutrient data from downstream may be used to detect changes associated with the enhanced treatment.
- 4. On page 9, second paragraph, last sentence. Avista anticipates the *in situ* data will be incorporated into the CE-QUAL-W2 model as a means to extrapolate the point data. The model does not extrapolate data, rather the additional *in situ* data could be used to assess the model output data.
- 5. On page 9, second to last paragraph. Does Avista plan to monitor in 2019 or any of the following years, or is that to be determined at a later date?

R 18

- 6. On page 13, section 3.2.3, Native Tree Planting. Avista did a great job to plant all those trees.
- 7. On page 15, section 4.0 Effectiveness of Implementation Activities, wetlands bullet. Avista stated it is unable to quantify a TP load reduction for these properties due to a lack of WQ trading ratios associated with the TMDL. However, they could use the STEPL model that was discussed in the Nonpoint Source Workgroup meetings to estimate the reduction. If Avista does not want to use STEPL, they could provide other information on how the wetlands are doing, such as plant survival, growth, or mortality.
- 8. Related to wetlands, Ecology would appreciate an update on the FERC license requirement that Avista is to "acquire, restore and/or enhance a minimum of about 43 acres of wetlands downstream of Nine Mile Dam. Was the wetland purchase in the Little Spokane watershed included or done as part of this requirement?
- 9. On page 16, first bullet, carp section. It is important that any landfill waste disposal option be checked for ability to accept PCB contaminated waste. Also, Ecology has concerns about future disposal options that might re-introduce PCBs to the environment.
- 10. On page 17, Wetlands bullet. Is there any timeline for the floating wetland project or proposed monitoring scheme that is appropriate for this?
- 11. On page 18, section 6.0, Schedule, last sentence see also page 20, third bullet from the top. Ecology asked Avista to develop a quality assurance/quality control plan for running the CE-QUAL-W2 model, which is slightly different than described in this sentence. The QA/QC plan can include the conditions in which running the model makes sense, but it includes far more information. Karin Baldwin sent Meghan the EPA guidance to develop the QA/QC plan that Cusimano sent me, but can resend if need be. Ecology Environmental Assessment Program (EAP) uses EPA's guidelines.

Please contact me at (509) 329-3567 or pmcg461@ecy.wa.gov if you have any questions.

Sincerely,

Path cquire

Patrick McGuire Eastern Region FERC License Coordinator Water Quality Program

PDM:jab

cc: Elvin "Speed" Fitzhugh, Avista

From:	Lunney, Meghan
To:	Pat McGuire (Pmcg461@ecy.wa.gov)
Cc:	Fitzhugh, Speed (Elvin); Knight, David T. (ECY); Moan, Chris; Baldwin, Karin K. (ECY); Ross, James D. (ECY)
Subject:	Lake Spokane DO WQAP, Five Year Report_REVISIONS
Date:	Friday, March 24, 2017 5:51:00 PM
Attachments:	Avista LakeSpokaneDOWOAP Five Year Rpt Revised March 24 2017 with red-lines.pdf
	Avista LakeSpokaneDOWQAP Five Year Rpt Revised March 24 2017 clean.pdf
	Avista Response to Ecology Comments DO 3-24-17.pdf
Importance:	High

Pat,

We have revised the Lake Spokane Dissolved Oxygen Water Quality Attainment Plan Five Year Report (Five Year Report) to address the comments you provided on March 6, 2017. The revisions include modifications to the main body of the report. To help expedite your review, I have included a version showing the red-lined revisions as well as a clean version. I've also provided a response to comments document.

We would greatly appreciate your expedited review of the revised Five Year Report by <u>March 28</u> in order to meet our FERC submittal date of March 31. Upon your approval, we will submit the report to FERC.

Please feel free to give me a call at 509-495-4643 if you have any questions.

Thanks!! -Meghan.

Meghan Lunney

Aquatic Resource Specialist

1411 E Mission MSC-1 Spokane, WA 99202 P 509.495.4643 C 509.842.6133 meghan.lunney@avistacorp.com http://www.avistautilities.com/environment/spokaneriver/resources/Pages/default.aspx

This email (including any attachments) may contain confidential and privileged information, and unauthorized disclosure or use is prohibited. If you are not an intended recipient, please notify the sender and delete this email from your system. Thanks.

From: McGuire, Patrick D. (ECY) [mailto:PMCG461@ECY.WA.GOV]
Sent: Monday, March 06, 2017 3:33 PM
To: Lunney, Meghan <Meghan.Lunney@avistacorp.com>; Fitzhugh, Speed (Elvin)
<SpeedElvin.Fitzhugh@avistacorp.com>
Subject: [External] Ecology Comment Letter for D.O. WQ Attainment Plan Five Year Report

Speed and Meghan – I have attached the Ecology response and comments for the D.O. WQ Attainment Plan Five Year Report.

Let me know if you have any questions or would like to discuss the Report. Thanks for the

opportunity to comment.

Patrick McGuire Hydropower Projects 401 Certification Manager Water Quality Program Eastern Regional Office (509) 329-3567 e-mail: <u>pmcg461@ecy.wa.gov</u>

USE CAUTION - EXTERNAL SENDER

Do not click on links or open attachments that are not familiar. For questions or concerns, please e-mail <u>phishing@avistacorp.com</u>

ECOLOGY COMMENTS AND AVISTA RESPONSES

On March 6, 2017, Ecology provided comments on the Lake Spokane Dissolved Oxygen Water Quality Attainment Plan Five Year Report (Five Year Report), dated January 31, 2017. Avista subsequently modified the Five Year Report to incorporate these comments, and resubmitted it to Ecology on March 24st. Avista's responses to Ecology's comments are provided as follows.

Ecology Comment 1:

The units are missing on page 7, Section 2.2, second bullet, in the sentence "Summer (June to September) hypolimnetic...a mean of $24.8 \pm 16\%$ ".

Avista Response

Section 2.2 was revised to correct the missing unit.

Ecology Comment 2:

In Section 2.3, page 8, in the second paragraph it would be helpful to give an explanation for why Avista plans to exclude the free flowing areas from assessments.

Avista Response

Section 2.3, page 8, was revised to clarify the multi-year fish population and habitat assessment is specific to Lake Spokane, the area impounded by Long Lake Dam.

Ecology Comment 3:

On page 9, second paragraph, the Report mentions that Avista would suspend the nutrient, chlorophyll, phytoplankton and zooplankton components of the baseline monitoring program. Ecology is concerned about suspending the nutrient data collection for the following reasons:

- a. The USGS will be monitoring the groundwater for nutrients in 2017 and 2018, Ecology feels it would be beneficial to have the nutrient data from the lake area for comparison and to see if there is any connection.
- b. Liberty Lake wastewater treatment plant tertiary treatment should be operating this fall. Nutrient data from downstream may be used to detect changes associated with the enhanced treatment.

Avista Response

Section 2.3 was modified to indicate that Avista <u>will</u> continue the baseline nutrient monitoring during 2017. Section 6.0 (Schedule) was also modified to incorporate this modification.

Ecology Comment 4:

On page 9, second paragraph, last sentence. Avista anticipates the *in situ* data will be incorporated into the CE-QUAL-W2 model as a means to extrapolate the point data. The model does not extrapolate data, rather the additional *in situ* data could be used to assess the model output data.

Avista Response:

Section 2.3 was revised to clarify the reference to the CE-QUAL-W2 model output data.

ECOLOGY COMMENTS AND AVISTA RESPONSES

Ecology Comment 5:

On page 9, second to last paragraph. Does Avista plan to monitor in 2019 or any of the following years, or is that to be determined at a later date?

Avista Response:

To address Ecology's comment Section 2.3 was revised as follows:

- Baseline nutrient monitoring will continue through 2017, with Avista and Ecology working together to determine whether or not to continue baseline nutrient monitoring during 2018, following the 2017 monitoring season.
- The multi-year fish population and habitat assessment in Lake Spokane is a two year study (conducted in 2017 and 2018) with results compiled and presented in 2019.

Ecology Comment 6:

On page 13, section 3.2.3, Native Tree Planting. Avista did a great job to plant all those trees.

Avista Response:

Avista partnered with the Stevens County Conservation District to plant these trees.

Ecology Comment 7:

On page 15, section 4.0 Effectiveness of Implementation Activities, wetlands bullet. Avista stated it is unable to quantify a TP load reduction for these properties due to a lack of WQ trading ratios associated with the TMDL. However, they could use the STEPL model that was discussed in the Nonpoint Source Workgroup meetings to estimate the reduction. If Avista does not want to use STEPL, they could provide other information on how the wetlands are doing, such as plant survival, growth, or mortality.

Avista Response:

Section 4.0 was modified to indicate that Avista plans to work with Ecology to explore appropriate total phosphorus load reduction quantification tools as the wetland management plans are implemented.

Ecology Comment 8:

Related to wetlands, Ecology would appreciate an update on the FERC License requirement that Avista is to "acquire, restore and/or enhance a minimum of about 43 acres of wetlands downstream of Nine Mile Dam. Was the wetland purchase in the Little Spokane watershed included or done as part of this requirement?

Avista Response:

Yes, as indicated in Ecology's May 20, 2014 letter to Avista and FERC's September 30, 2014 Order, the 109-acre Sacheen Springs Wetland Complex in the Little Spokane Watershed (which includes more than 43-acres of wetlands), fulfills the requirements of the Washington 401 Certification Section 5.3(G).

Ecology Comment 9:

On page 16, first bullet, carp section. It is important that any landfill waste disposal options be checked for ability to accept PCB contaminated waste. Also, Ecology has concerns about future disposal options that might re-introduce PCBs to the environment.

ECOLOGY COMMENTS AND AVISTA RESPONSES

Avista Response:

Avista provided Waste Management with Ecology's **Lake Spokane: PCBs in Carp** (July 2015, Publication No. 15-03-022) which contained the PCB fish tissue concentrations for carp collected from Lake Spokane. Concentrations of PCBs in the fish tissue, as indicated in the Report, were far below any applicable regulatory limit and the carp were approved for disposal in Waste Management's Wenatchee and Arlington landfills. Avista clarified Section 5.0 to indicate that it will dispose of the carp removed from Lake Spokane at one of these two landfills.

Ecology Comment 10:

On page 17, Wetlands bullet. Is there any timeline for the floating wetland project or proposed monitoring scheme that is appropriate for this?

Avista Response:

Section 5.0 was revised to indicate the floating wetland project is planned for 2017, pending permits.

Ecology Comment 11:

On page 18, Section 6.0, Schedule, last sentence – see also page 20, third bullet from the top. Ecology asked Avista to develop a quality assurance/quality control plan for running the CE-QUAL-W2 model, which is slightly different than described in this sentence. The QA/QC plan can include the conditions in which running the model makes sense, but it includes far more information. Karin Baldwin sent Meghan the EPA guidance to develop the QA/QC plan that Cusimano sent me, but can resend if need be. Ecology Environmental Assessment Program (EAP) uses EPA's guidelines.

Avista Response:

Section 6.0 was revised to clarify that Avista will continue to work with Ecology during 2017 in regard to developing a plan to run the CE-QUAL-W2 model. This may include timing, objectives, data input, and a QA/QC plan for potential future model runs.

STATE OF WASHINGTON DEPARTMENT OF ECOLOGY

4601 N Monroe Street • Spokane, Washington 99205-1295 • (509)329-3400

March 27, 2017

Ms. Meghan Lunney Aquatic Resource Specialist Avista Corporation 1411 East Mission Avenue, MSC-1 Spokane, WA 99220-3727

RE: Request for Ecology Review and Comments – *Lake Spokane Dissolved Oxygen Water Quality Attainment Plan, Five Year Report* Spokane River Hydroelectric Project, No. P-2545

Dear Ms. Lunney:

The Department of Ecology (Ecology) has reviewed the *Lake Spokane Dissolved Oxygen Water Quality Attainment Plan, Five Year Report* sent to Ecology on March 24, 2017. The Annual Summary Report is a requirement of Section 5.6.C, Appendix B of the 401 Certification. Thank you for addressing Ecology's concerns and comments.

Ecology approves the Lake Spokane Dissolved Oxygen Water Quality Attainment Plan, Five Year Report as submitted.

Please contact me at (509) 329-3567 or pmcg461@ecy.wa.gov if you have any questions.

Sincerely,

McGince

Patrick McGuire Eastern Region FERC License Coordinator Water Quality Program

PDM:red

cc: Elvin "Speed" Fitzhugh, Avista Dave Knight, Ecology