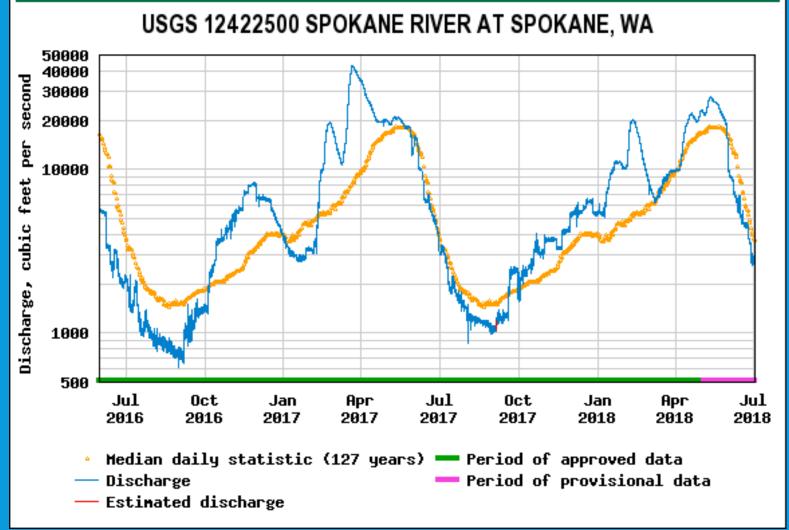
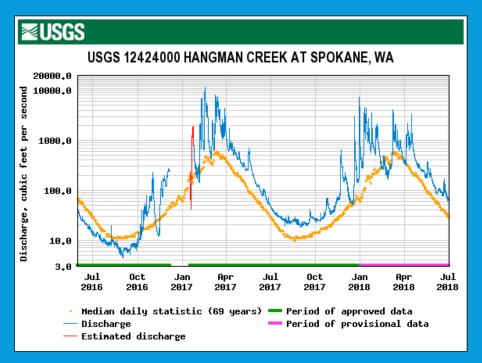
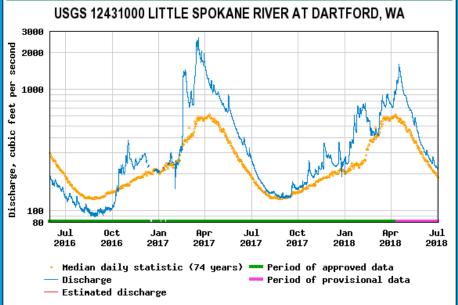
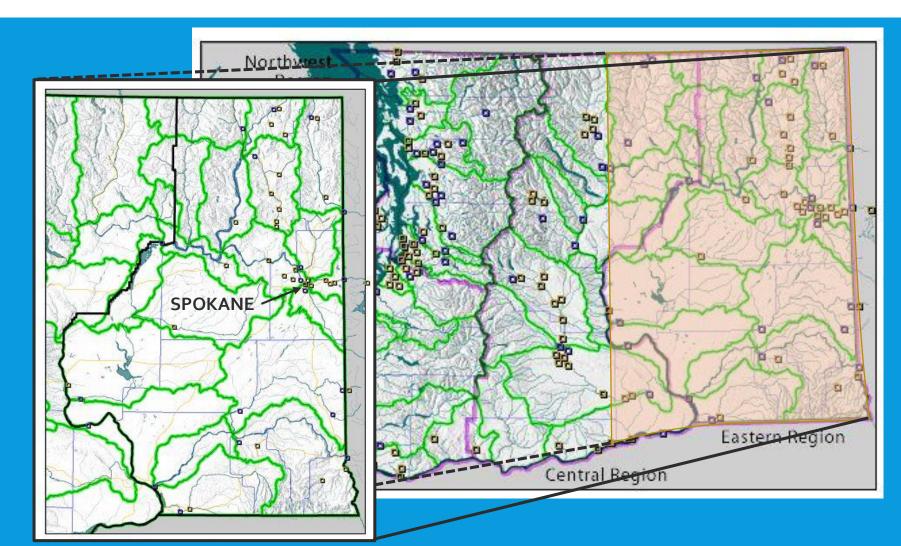
Update for Spokane River DO Monitoring Workgroup July 17, 2018 Cathrene Glick – Ecology EAP


SPOKANE RIVER BASIN MONITORING & STUDIES





≊USGS


≊USGS

ECOLOGY "LONG TERM" AND "BASIN STATION" MONITORING SITES

HTTPS://FORTRESS.WA.GOV/ECY/EAP/RIVERWQ/REGIONS/STATE.ASP?SYMTYPE=1

HTTPS://FORTRESS.WA.GOV/ECY/EAP/RIVERWQ/REGIONS/STATE.ASP?MODE=ERO

SPOKANE RIVER WATER QUALITY MONITORING SITES

"BLUE" = LONG TERM SITES "YELLOW" = 2017-2018 BASIN SITES

SR@Nine Mile Bridge

SR@Riverside State Park

SR@Greene St

SR@Stateline

Hangman Creek@Mouth

Google Earth

"TYPICAL DATA" FROM WQ DATA WEBSITE

onvent	ional	para	met	ers	P	Parame	ter, ur	nit, and d	ata-q	ualifier desc	cripti	ions				Sp	ОК	ane	Rive	ræs	Statelir	ne		
date	time	CON (umhos/		DOC (mg/l		FC (#/100		NH3_ (mg/		NO2_NO3 (mg/L)	3	OP_DI (mg/L		OXYGEN (mg/L)	PH (pH)	PRESS (mm/Hg)		ISSOL ng/L)	TEMP (deg C)	TOC (mg/L)	TP_P (mg/L)	TPN (mg/L		TU (NT
10/4/2016	13:00	54			Π	6		0.01		0.142		0.003	U	9.4	7.64	705.6	1	1	16		0.0078	0.22		0.7
11/15/2016	12:55	53			П	4		0.01	U	0.04		0.003	UJ	10.2	7.60	701.8	1		10.9		0.0076	0.111	П	0.5
12/6/2016	13:55	54			Π	1	U	0.01	U	0.07		0.003	U	10.9	7.43	709.4	1	U	6.9		0.0061	0.132		0.5
1/10/2017	15:00	55			П	3		0.01	UJ			0.0054		12.5	7.72	700.5	3		2.4		0.0113	0.163	J	0.5
2/7/2017	13:45	58			П	3		0.01	U	0.109		0.003	U	13.4	7.17	699.8	1	U	1.6		0.0103	0.178		0.6
3/7/2017	13:25	56			П	1	U	0.01	U	0.072		0.0037		13.5	7.36	709.2	1		1.9		0.0104	0.145	П	1.
4/4/2017	12:35	50				1	U	0.012		0.1		0.0075	J	13.8	7.31	710.9	3		4.3		0.0202	0.155		5.
5/2/2017	12:40	46			П	2		0.01	U	0.037		0.0037		12.5	7.51	713.2	3		8.3		0.014	0.088	П	2.
6/6/2017	13:15	44			П	3		0.01	U	0.014		0.003	U	9.8	7.54	706.4	2		16.4		0.0106	0.073		1.
7/11/2017	13:05	49			Π	9		0.012		0.099		0.0042		7.6	7.72	706.1	1		25.1		0.0113	0.188		0.
8/8/2017	12:15	57				49		0.015		0.204		0.0074		8.1	7.96	705.6	1		24.3		0.0109	0.306		1.
9/12/2017	13:00	55				5		0.011		0.212		0.003	U	8.1	7.78	704.1	1	U	21.4		0.0096	0.303		0.
10/10/2017	10:15	52		1		1	U					_		9.2	7.65	703.8	1		13.5	1		1	Π	
1/14/2017	09:10	50		1.31	J	5		0.028		0.062		0.007		10.2	7.55	710.7	1	UJ	7.8	1.56	0.0115	0.152	Π	0.0
12/5/2017	10:15	50		1.48		1	U	0.014		0.045		0.0084		10.8	7.46	722.9	1	U	6.4	1.41	0.0105	0.124	П	0.5
1/9/2018	10:00	51		1.33	Π	14	1	0.036		0.052		0.0044		12.3	8.02	696.5	1	U	4.5	1.38	0.0111	0.147		0.0
2/6/2018	10:15	52		1.48	Π	1	U	0.01	U	0.051		0.0033		12.3	7.73	714	3		4	1.26	0.0107	0.133	Π	1.6
3/6/2018	10:30	55		1.64		5	J	0.029		0.08		0.0038		12.6	7.44	714.5	1		2.8	1.6		0.192		1.2
4/10/2018	10:20			1.73		2		0.01	U	0.079		0.0044					2			1.76	0.0122	0.148	\square	1.7

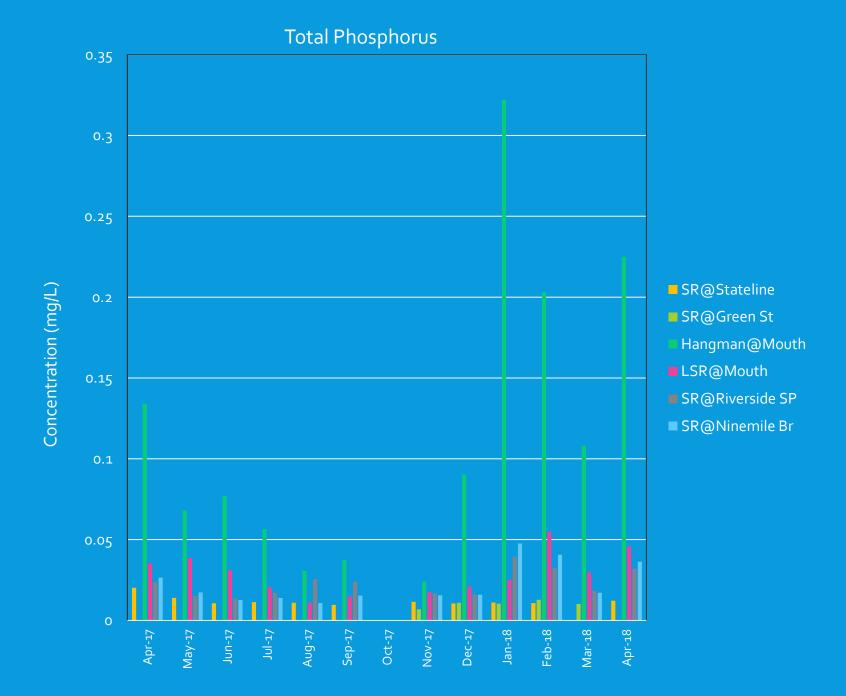
Metals Parameter, unit, and data-gualifier descriptions

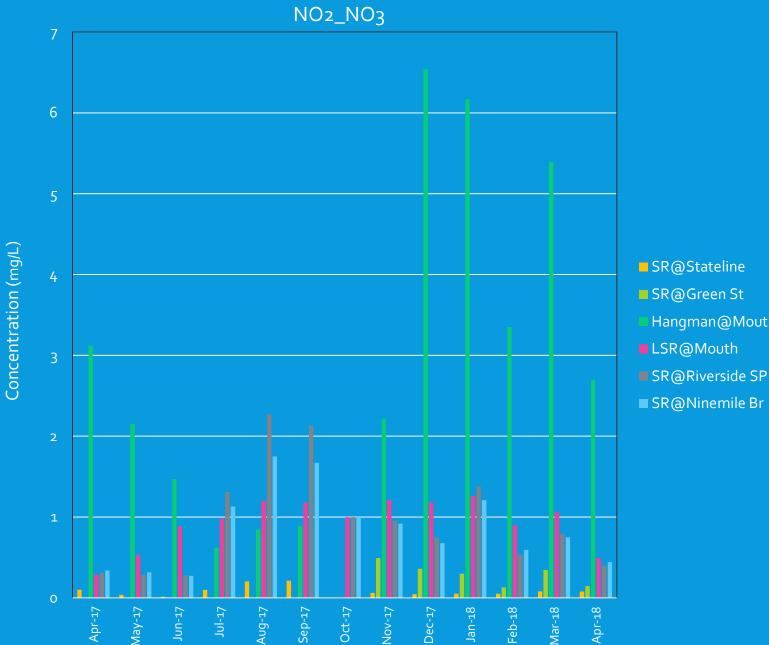
date	time	Ag_l (ug		Ag_ (ug		As_D (ug/l		As_TF (ug/L)		Cd (ug/l		Cd_DI: (ug/L)		Cr (ug/		Cr_l (ug		Cu (ug/L)	Cu_l (ug		HARI (mg/t		Hg_AA (ug/L)		ug/L)		NI_TR (ug/L)	Pb (ug/L)	Pb_l (ug		Zn (ug/L)	Zn_ (ug	
10/4/2016	13:00	0.02	U	0.1	U	0.44		0.44		0.12		0.079		0.1	U	0.1	U	0.54	0.4	Т	20.9	Γ	0.0011	0	13		0.22	1.12	0.141		29.8	25	Т
12/6/2016	13:55	0.02	U	0.1	U	0.43	Γ	0.49		0.16		0.131				0.1	U	0.59	0.42		21.2	Γ	0.0007	0	19		0.22	0.65	0.066		48.2	45.2	2
2/7/2017	13:45	0.02	U	0.1	U	0.43	Γ	0.53		0.19		0.144		0.15		0.1	U	0.69	0.45	T	22.6	Γ	0.001	0	19		0.25	1.33	0.325		57.9	49.2	2
4/4/2017	12:35	0.02	U	0.1	U	0.48		0.66	Π	0.25		0.184		0.3		0.17		0.96	0.7		19.5		0.0057	0	29		0.44	12.1	3.79		55.5	48.6	;
6/6/2017	13:15	0.02	U	0.1	U	0.31		0.36	Π	0.19		0.134		0.11	Γ	0.14		0.54	0.44	Т	18	Γ		0	17		0.18	2.05	0.434		35.2	30.5	;
8/8/2017	12:15	0.02	U	0.1	U	0.45		0.45		0.1	U	0.063		0.1	U	0.1	U	0.48	0.45		21.4		0.0006	0	.13		0.16	0.57	0.1		20.9	17	
10/10/2017	10:15						Γ		Т											Τ	20			Γ		Τ				Т	24	21	
12/5/2017	10:15	0.02	U	0.1	U	0.42	Γ	0.47		0.14		0.118		0.1	U	0.1	U	0.55	0.49		20		0.0006	0	19		0.23	0.46	0.087		39.3	37.5	;
2/6/2018	10:15	0.02	UJ	0.1	U	0.41	J	0.5	Π	0.22		0.144	J	0.15		0.1	UJ	0.69	0.47	J	21.3		0.0014	0	23	J	0.31	2.36	0.235	J	52.4	43.6	; ,
4/10/2018	10:20	0.02	U	0.1	U	0.36		0.47		0.21		0.163		0.19				0.79	0.56		21.1	Γ	0.0014	0	26		0.32	2.12	0.832		53.7	48.1	T
Colored backg	round 🗔	indicate	s that	result	exce	eded w	ater	ouality st	tand			Time	s ai	re local	(Pa	cific Sta	ndard	t the report or Pacific ults The	Dayligh	nt Sa	vings).			vate	qual	itv s	andards	s was inco	rporated	begi	nning in Ja	inuarv	2009

NOTE: Data May Be "Preliminary"

ENVIRONMENTAL INFORMATION MANAGEMENT (EIM) SYSTEM

HTTPS://FORTRESS.WA.GOV/ECY/EIMREPORTING/MONITORINGPROGRAMDEFAULT.ASPX?STUDYMONITORINGPROGRAMUSERID=RIVERSTREAM&STUDYMONITORINGPROGRAMUSERIDSEARCHTYPE=EQUALS

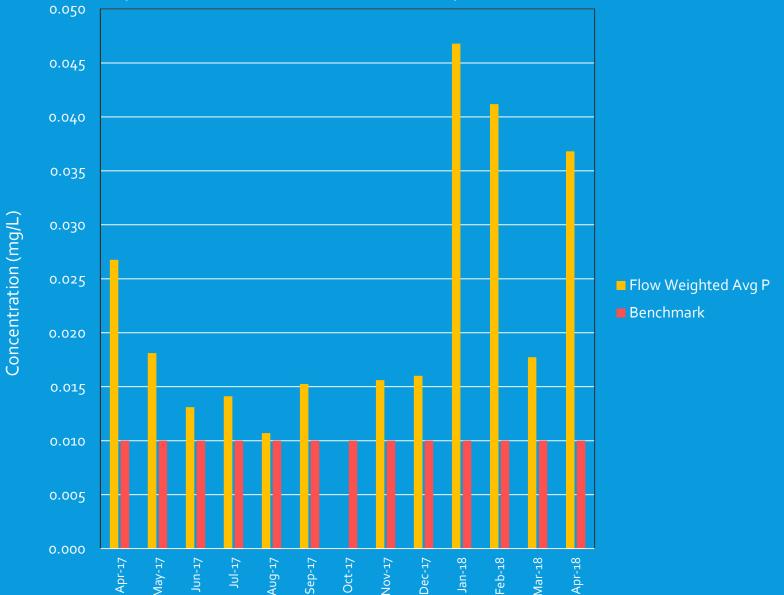

Image: https://fortress.wa.gov/ecy/eimreporting/MonitoringProgramDefault.aspx?S Image: https://fortress.wa.gov/ecy/eimreporting/Mon	udyMonitoringProgramUserId=RiverStream&StudyMonitoringProgramUserIdSearchType=Equals 🔹 🔒 State of Washington [US] 🖒 S ate Department 🔟 EIM Search 🛛 × 了	- ロ X arch ター 命☆簡ピ
DEFARTMENT OF ECOLOGY State of tradangton		
Search Home All Studies Locations Results Groundwater Help Center	Contact EIM	EIM data last updated on Thursday, June 21, 2018
Ecology Home EIM Home Search Submit Data MyEIM Help Center Contact	River and Stream Water Quality Purpose: Purpose: <td>esri mg Map</td>	esri mg Map


Data Disdaimer Ecology Privacy Notice Accessibility Copyright © EIM Search, Washington State Department of Ecology, All Rights Reserved

EIM DATA "CLIP" FOR SPOKANE RIVER AT STATELINE SITE

Res	ults List		1189	11.12 St.									
Re	sults Tin	me Series Resuli	ts Water Column Profiles	Summarized Results									
	Study ID	Location ID	Study-Specific Location ID	Field Collection Start Date	Sample Matrix	Sample Source	Result Parameter Name	Result Value	Result Value Units	Result Data Qualifier	Result Measurement Basis Code	Result Method Code	Result Sample Fraction
	AJOH0002	STATELIN	STATELIN	May 20, 1997	Water	Fresh/Surface Water	Cadmium	0.275	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Cadmium	0.282	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Lead	9.2	ug/L			EPA200.8	Tot Recoverable
	AJOH0002	STATELIN	STATELIN	Apr 08, 1997	Water	Fresh/Surface Water	Lead	1.41	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 06, 1997	Water	Fresh/Surface Water	Zinc	87.4	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Cadmium	0.283	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	Jun 03, 1997	Water	Fresh/Surface Water	Copper	0.64	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 20, 1997	Water	Fresh/Surface Water	Copper	0.591	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 20, 1997	Water	Fresh/Surface Water	Zinc	79.5	ug/L			EPA200.8	Tot Recoverable
	AJOH0002	STATELIN	STATELIN	Apr 08, 1997	Water	Fresh/Surface Water	Cadmium	0.44	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Zinc	63.9	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	Jun 03, 1997	Water	Fresh/Surface Water	Hardness, Total as CaCO3	16.3	mg/L			SM2340B	
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Copper	0.61	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	Jun 03, 1997	Water	Fresh/Surface Water	Zinc	78.9	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 20, 1997	Water	Fresh/Surface Water	Zinc	59.9	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Copper	0.58	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Cadmium	0.37	ug/L			EPA200.8	Tot Recoverable
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Hardness, Total as CaCO3	18.8	mg/L			SM2340B	
	AJOH0002	STATELIN	STATELIN	May 20, 1997	Water	Fresh/Surface Water	Lead	12.2	ug/L			EPA200.8	Tot Recoverable
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Zinc	64.8	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	Apr 08, 1997	Water	Fresh/Surface Water	Copper	0.86	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	Jun 03, 1997	Water	Fresh/Surface Water	Lead	1.65	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Zinc	62.7	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 06, 1997	Water	Fresh/Surface Water	Hardness, Total as CaCO3	20	mg/L	C		SM2340B	
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Hardness, Total as CaCO3	19.3	mg/L			SM2340B	
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Zinc	75.8	ug/L			EPA200.8	Tot Recoverable
	AJOH0002	STATELIN	STATELIN	Apr 08, 1997	Water	Fresh/Surface Water	Zinc	119	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 06, 1997	Water	Fresh/Surface Water	Lead	2.5	ug/L	C		EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 06, 1997	Water	Fresh/Surface Water	Hardness, Total as CaCO3	20.3	mg/L			SM2340B	
	AJOH0002	STATELIN	STATELIN	May 06, 1997	Water	Fresh/Surface Water	Cadmium	0.326	ug/L	C		EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Lead	1.93	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Hardness, Total as CaCO3	18.9	mg/L			SM2340B	
	AJOH0002	STATELIN	STATELIN	May 06, 1997	Water	Fresh/Surface Water	Lead	12.3	ug/L			EPA200.8	Dissolved
	AJOH0002	STATELIN	STATELIN	May 12, 1997	Water	Fresh/Surface Water	Cadmium	0.275	ug/L			EPA200.8	Dissolved
	_												

EIM provides the ability to "sort" on specific parameters or dates



Flow Weighted Phosphorus

Spokane River @ Ninemile and Little Spokane River @ Mouth

RECENT & ONGOING STUDIES......

- Evaluation of Fish Hatcheries as Sources of PCBs to the Spokane River – Publication No. 18-03-014 April 2018
- Lake Spokane Measuring Improvement in Dissolved
 Oxygen and Ecosystem Health A Literature Review –
 Publication No. 18-03-008 May 2018
- Little Spokane River Dissolved Oxygen, pH, and total Phosphorus TMDL – Water Quality Improvement Report and Implementation Plan (*Field Work Complete and Report In Progress*)
- Tekoa Receiving Water Study & Hangman Creek
 Springtime "High Flow" Runoff Watershed Study & Lower
 Hangman Creek "Low-Flow" and Groundwater Study

LSR DO, PH, TOTAL P TMDL STUDY...

Background

- Ecology initiated TMDLs studies in the LSR watershed in the early 2000s. The initial effort focused on addressing fecal coliform bacteria, temperature, and turbidity impairments. This TMDL was completed and approved by EPA in 2012 (Joy & Jones, 2012).
- The LSR and its tributaries are also impaired by low dissolved oxygen (DO) and high pH.
 Historical data collection efforts indicate some locations have been impaired since the 1990s and have been listed on sequential state 303(d) lists of impaired waterbodies.
- In addition, the Spokane River DO TMDL set total phosphorus, ammonia, and carbonaceous biological oxygen demand (CBOD) allocations at the mouth of the Little Spokane River (Moore & Ross, 2010). This TMDL has been developed to address both the in-watershed DO and pH impairments in the watershed and the allocations at the mouth.

Objectives

Conduct a TMDL assessment study, develop TMDL allocations, and develop a water quality improvement implementation plan, with the ultimate goals of:

• Meeting the load allocation for phosphorus at the mouth of the Little Spokane River, established in the Spokane River TMDL (Moore and Ross, 2010).

Bringing the Little Spokane River and its tributaries into compliance with dissolved oxygen and pH water quality standards where impairments have been identified.

Scope of Work

- Conduct two synoptic water quality surveys along the mainstem Little Spokane River during the low-flow season (July – August) to generate data needed by the QUAL2Kw computer model.
- Collect one year of nutrient, suspended sediment, streamflow, and other related data at approximately one-month intervals and for storm events from a network of sites distributed throughout the Little Spokane River watershed.
- Sample each of five lakes once during late summer for epilimnion and hypolimnion nutrients, and collect temperature, dissolved oxygen, and pH profiles, to assist in understanding the role of lakes in nutrient transport, especially in the West Branch Little Spokane River.

Scope of Work (cont'd)

- Collect diel dissolved oxygen and pH data at locations throughout the Little Spokane River watershed.
- Use the River Metabolism Analyzer (RMA) model to assess nutrient impacts to dissolved oxygen and pH in tributaries and in the upper portion of the Little Spokane River.
- Assess nutrient impacts to dissolved oxygen and pH in the middle and lower Little Spokane River using the QUAL₂Kw model framework.
- Assess watershed nutrient loading using monthly data collected throughout the watershed.
- Establish load and wasteload allocations throughout the watershed based upon the more restrictive of: (1) loading that allows the attainment of water quality standards for dissolved oxygen and pH in streams within the Little Spokane watershed or (2) loading that meets the load allocation for total phosphorus set for the mouth of the Little Spokane River in the Spokane River and Lake Spokane Dissolved Oxygen and Phosphorus TMDL.

WHAT IS PROJECT TIMELINE?

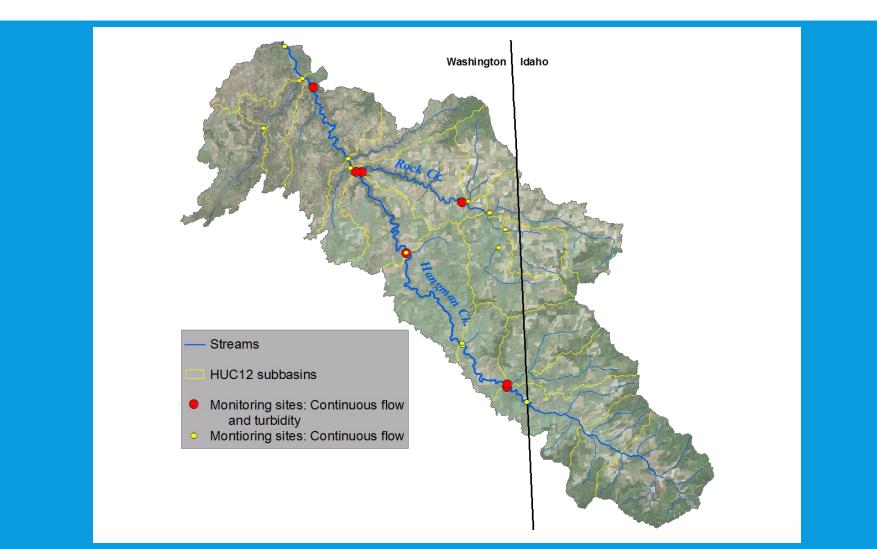
Timeframe	Study Aspect
June 2015 - October 2015	"Dry Season" Sampling (<i>Complete</i>)
November 2015 – May 2016	"Wet Season" Sampling (<i>Complete</i>)
June 2016 – May 2018	Data Entry, Data Analytics and Modeling (Complete)
January - June 2018	Draft Report for Internal Review (Delayed)
August 2018	Final Report (Delayed)

HANGMAN CREEK STUDIES...

An extensive study of the Hangman Creek watershed

Objectives

- To assess the Hangman Creek watersheds contribution of pollutants affecting dissolved oxygen in the Spokane River.
- To determine the nutrient and CBOD loads from the Tekoa Wastewater Treatment Plant (WWTP) that will protect dissolved oxygen and pH in Hangman Creek.
- Assess nutrient loads from Latah Wastewater Treatment Plant
- Assess Groundwater Quality Contribution to Lower Hangman


Tekoa receiving water study

- Assess impact of Tekoa WWTP effluent on DO and pH in Hangman Creek. Provide information that can be used to set permit limits for nutrients.
- Define seasonal window when Tekoa WWTP effluent has the potential so cause a significant impact to DO and pH in Hangman Creek.
- Provide assessment of 303(d) listed areas of Hangman Creek in/near Tekoa, upstream of WWTP.

Watershed springtime runoff study

- Determine relative contributions of various parts of the watershed to sediment and phosphorus load.
- Use to set load reductions necessary to meet LA at Hangman mouth for Spokane TMDL, for March-May season.
- Provide up-to-date total suspended solids (TSS)/suspended sediment concentration (SSC) dataset for comparison to older datasets collected by the Spokane Conservation District and USGS during the late 1990s and 2000s.

WATERSHED SPRINGTIME RUNOFF A LITTLE MORE DETAIL...

Lower watershed groundwater study

- Define the gaining reaches in the area of interest to determine where groundwater is flowing into Hangman Creek.
- In these gaining reaches, characterize nutrient concentrations of groundwater inputs to the last 9 miles of Hangman Creek.
- Locate and quantify nutrient loads from groundwater in this reach.
- Quantify what portion of low-flow TP load to Spokane River comes from lower watershed groundwater.

Lower watershed low-flow study

- Provide accounting of sources of nutrients reaching the Spokane River at low flow in order to set load reductions needed to meet the load allocation at Hangman mouth for the Spokane TMDL, for the June and July-October seasons.
- Provide more instream confirmation as to whether impacts from the Latah (Hangman Hills) WWTP have been eliminated as a result of facility upgrades in 2011.

WHAT IS PROJECT TIMELINE?

Timeframe	Study Aspect
May – October 2017	Tekoa receiving water study (<i>Complete</i>)
January – May 2018	Watershed spring "high flow" runoff study (Complete)
May – October 2018	Lower watershed "low flow" study (In Progress)
May – October 2018	Hangman Hills groundwater study (In Progress)
May 2020	Final Report

Thank You

Contact:

Cathrene Diane Glick, LG, LEG, LHG

Dept. of Ecology – Environmental Assessment Program

cgli461@ecy.wa.gov

509-329-3425 (office)

509-209-7444 (cell)