

Spokane Dissolved Oxygen TMDL 10-Year Effectiveness Study

Tighe Stuart

Environmental Assessment Program, Eastern Regional Office Spokane River Forum, 4/23/2025

Spokane River & Lake Spokane DO TMDL (2010) Placed limits on:

5 Point Source Facilities

With levels set to achieve:

Total Phosphorus (TP)★ CBOD Ammonia-N TP levels ~10 ug/L flowing into Lake Spokane

(Way more than) 10 years of progress

Spokane TMDL 10-Year Assessment

- TMDL has 20-year implementation timeframe
- 10-Year Assessment is "halfway check"

Relies on a large variety of data sources

- Ecology data sources
- Non-Ecology data sources
 - Avista/Tetra Tech Lake Spokane monitoring
 - Spokane County groundwater data
 - City of Spokane stormwater & CSO data
 - Discharger Monitoring Reports (DMR)
 - USGS streamflow data
 - USGS Lake Spokane groundwater studies

USGS

Phosphorus Reduction: Point Sources

Spokane River Actual Point Source Loads

91% reduction!

Phosphorus Reduction: Nonpoint Sources

NOV-FEB MAR-MAY A JUN + JUL-OCT NON-DETECT

67% reduction (since the 1970s)

46% reduction (since the 1970s) $^{\circ}$

Phosphorus **Reduction: Overall effect of** point and nonpoint reductions

Spokane River @ Riverside St. Park: Total Phosphorus

84% reduction (since the 1970s)

1 0.1 TP (mg/L) **₩**⊳ 0.01 - Flow-Weighted Average City of Spokane 10 ug/L benchmark NLT comes online Flow-Weighted Observations 0.001 1/1/19 1/1/15 1/1/16 1/1/17 1/1/10 1/1/11 1/1/12 1/1/13 1/1/14 2/08 /1/09 /1/18 1/1/20 1/1/21 /1/22 1/1/23

Estimated Total Phosphorus -- Riverine Assessment Point, 2008-2022

Lake Response (Dissolved Oxygen and Harmful Algae Blooms)

First, a bit of historical context

What happened the last time we did this, back in the 1970's?

Data from: Patmont et al., 1987 Welch et al., 2015

So where are we now (as of 2022)?

Data from: Patmont et al., 1987; Welch et al., 2015; this study

What about Harmful Algae Blooms?

Recorded Toxic Algae Blooms, Lake Spokane

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 ▲ Toxin above state guideline ● Not above state guideline

Let's talk more about nonpoint...

Photo credit: Spokane Riverkeeper/ Cutboard Studios

March - May

June

July - October

What needs to be done next?

Focus on nonpoint pollution

- Especially sediment-laden runoff in Hangman and Little Spokane
- Keep monitoring Lake Spokane
 - Track DO response as lake re-equilibrates to reduced TP inflows

• Fulfill remaining TMDL requirements

Questions?

Spokane 10-year Effectiveness Study Report URL:

https://apps.ecology.wa.gov/publications/SummaryPage s/2503001.html

Tighe Stuart

Environmental Assessment Program

Eastern Regional Office

509-638-3257

tighe.stuart@ecy.wa.gov