

West Plains Area and PFAS

A General Overview

Jon Welge and Heather Gosack, LG Tetra Tech April 26, 2023

What are PFAS?

- Per- and polyfluoroalkyl substances
- 5,000 12,000 chemical substances (no universally agreed upon definition for PFAS)
- Tendency to bioaccumulate; are persistent in the environment ("forever chemicals")
- Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic (PFOS) acid most commonly studied/found
- Widely used due to their unique chemical and physical properties
- The following are considered 'PFAS' in this presentation: PFOA, PFOS, Perfluorobutanesulfonic acid (PFBS), Perfluorononaoic acid (PFNA), Perfluorohexanesulfonoic acid (PFHxS), Perfluoroheptanoic acid (PFHpA)

Figure Source: ITRC, 2022

Figure source: ITRC, 2022

PFAS – Where Do We Find It?

- Wastewater treatment plants
- Waste disposal facilities
- Airports
- Bulk fuel terminals & refineries
- Paper mills
- Carpet manufacturing
- Textile and leather processors
- Metal plating facilities
- Industrial surfactants
- Military facilities
- Class B fluorine-containing aqueous film-forming foams (AFFF)
- Personal care products (e.g., cosmetics, shampoos, lotions)
- Sunscreen and insect repellants
- Food packaging
- Car washes
- Wet laundry
- Medical products (e.g., contact lenses, body implants)

West Plains Area – PFAS Identification and Studies

- May 2017 PFAS identified in drinking water for the city of Airway Heights due to historical use of aqueous film-forming foam (AFFF) at Fairchild Airforce Base (FAFB)
- PFAS found at FAFB and multiple isolated hot spots including County Fire Districts, an elementary school, and rural housing
- Multiple aquifers affected
- On-base PFAS concentrations: 12,000 to 187,000 parts per trillion (ppt)
- Off-base: non-detect (ND) to 5,700 ppt

Table 1 - PFAS Sampling	able 1 - PFAS Sampling Results Outside of FAFB Study Area WADOH Great Fire			
	WADOH State Action Levels (ng/L)	Palisades Residence (ng/L)	Great Northern Elementary School (ng/L)	Fire District 10 Station 5 (ng/L)
Perfluorobutanesulfonic acid - PFBS	345			86.3
Perfluoroheptanoic acid - PFHpA				336
Perfluorohexanesulfonic acid - PFHxS	65	6.4	74	638
Perfluorononanoic aid - PFNA	9			1,010
Perfluorooctanesulfonic acid - PFOS	15		115	1,930
Perfluorooctanoic acid - PFOA	10	9.6	12.6	360

Potential Sources of PFAS – West Plains And Beyond

Includes the following potential sources (non-comprehensive):

- Landfills
- Airports
- Military Facilities
- Industrial and Commercial Facilities (that may have used/produced/stored PFAS-containing products)
- Refineries and Bulk Fuel Terminals
- Sewage Treatment and Water Reclamation Facilities
- Fire Department Training Areas and Fire Stations
- Car Washes

West Plains Area – PFAS Identification and Studies

- Different PFAS 'signatures' observed in collected data.
- Data in parts per billion (ppb), i.e., 3 orders of magnitude higher than ppt
- Data suggests multiple different sources of PFAS impacts, or environmental factors have degraded certain PFAS

Toulou and Pritchard, 2023

Fairchild AFB – At A Glance

- Sampled 422 private drinking water wells
- Detected PFAS in 106 private wells above the former EPA health advisory level of 70 ppt
- Detected PFAS in 2 of 4 municipal wells above the former EPA health advisory level of 70 ppt
- Has ~90 residential filtration systems in place
- Has 7 residences connected to the municipal water supply
- Has ~20 homes receiving bottled water
- Has 10+ homes in the pre-design stage for filtration
- Nearly 100 homes being monitored for PFAS presence below the former EPA health advisory level of 70 ppt

West Plains Area - Geology

Pritchard et al, 2020

West Plains Area – Geology

Pritchard et al, 2020

- Three aquifer systems shallow Wanapum Basalt, paleochannels filled with sedimentary deposits, and deeper Grande Ronde Basalt
- PFAS identified in shallow Wanapum Basalt, to date
- Grande Ronde Basalt regionally confined
- Complicated fate and transport and aquifer interactions

PFAS Cleanup Concentrations – Federal

- 2016 EPA issued lifetime drinking water health advisory of 70 ppt for PFOA and PFOS (not enforceable)
- June 2022 EPA issued Interim Updated health advisories for PFOA (0.004 ppt) and PFOS (0.02 ppt) and final health advisories for GenX (10 ppt) and PFBS (2,000 ppt)
- March 2023 EPA proposed maximum contaminant levels (MCLs) for 6 PFAS. Public comment period open until end of May 2023

EPA's Proposed Action for the PFAS NPDWR

Compound	Proposed MCLG	Proposed MCL (enforceable levels)
PFOA	zero	4.0 ppt*
PFOS	zero	4.0 ppt*
PFNA		
PFHxS	1.0 (unitless)	1.0 (unitless)
PFBS	Hazard Index	Hazard Index
HFPO-DA (commonly referred to as GenX Chemicals)		

*ppt = parts per trillion (also expressed as ng/L)

EPA United States Environmental Protection Agency Office of Water

PFAS Cleanup Concentrations – Washington

- July 2022 Washington Ecology provides recommended soil and groundwater cleanup levels for 6 PFAS
- ng/L = ppt

Table 1: Recommended groundwater cleanup levels

PFAS Compound	Recommended Groundwater Cleanup Level	EPA Health Advisory Level
PFOA	10 ng/L	0.004 ng/L
PFOS	15 ng/L	0.02 ng/L
PFNA	9 ng/L	None
PFHxS	65 ng/L	None
PFBS	345 ng/L	2,000 ng/L
HFPO-DA (GenX)	24 ng/L	10 ng/L

Table 2: Recommended soil cleanup levels protective of groundwater

PFAS Compounds	Vadose Zone	Saturated Zone
PFOA	6.3E-05 mg/kg	4.0E-06 mg/kg
PFOS	1.7E-04 mg/kg	9.9E-06 mg/kg
PFNA	8.0E-05 mg/kg	4.8E-06 mg/kg
PFHxS	4.1E-04 mg/kg	2.6E-05 mg/kg
PFBS	1.8E-03 mg/kg	1.2E-04 mg/kg
HFPO-DA (GenX)	1.0E-04 mg/kg	7.2E-06 mg/kg

Table 3: Recommended soil direct contact cleanup levels

PFAS Compounds	Method B	Method C
PFOA	0.24 mg/kg	11 mg/kg
PFOS	0.24 mg/kg	11 mg/kg
PFNA	0.2 mg/kg	8.8 mg/kg
PFHxS	0.78 mg/kg	34 mg/kg
PFBS	24 mg/kg	1,100 mg/kg
HFPO-DA (GenX)	0.24 mg/kg	11 mg/kg

Cleanup Concentration Comparison

Drinking Water EPA MCLs – Common Contaminants With Lowest MCLs

Lead – 15,000	Mercury – 2,000	Benzene – 5,000
ng/L	ng/L	ng/L
Benzo(a)pyrene – 200 ng/L	Dioxin (2,3,7,8- TCDD) – 0.03 ng/L	PCBs – 500 ng/L
PCE and TCE –	Arsenic – 10,000	Vinyl Chloride –
5,000 ng/L	ng/L	2,000 ng/L

PFAS Proposed Drinking Water MCLs

PFOA - 4 ng/L

PFOS - 4 ng/L

TE TETRA TECH

Current Challenges in PFAS Remediation

- Unique properties require innovative remediation technologies
- Performance and operating costs depend on many factors, including:
 - Concentration and type of PFAS
 - General water quality parameters
 - Co-contaminants
- Activated Carbon most commonly used full-scale treatment
 - Granular (GAC)
 - Colloidal
 - Powder
- Ion Exchange second most commonly used full-scale treatment
 - Resins
- Can be high maintenance costs due to usage capacities, breakthrough times, and change-out frequency

Disposing of used engine oil can be a problem. Solution: Dig a hole in the ground with a posthole digger and fill it with fine gravel. Then pour in the oil. It will be absorbed into the ground before your next change. Cover the spot with soil.

166 POPULAR SCIENCE JANUARY 1963

Heather Gosack, LG Senior Geologist / Account Manager <u>Heather.Gosack@tetratech.com</u> Phone: 503-333-2916

Jon Welge Senior Environmental Scientist Jon.Welge@tetratech.com Phone: 509-263-5737